Open Access. Powered by Scholars. Published by Universities.®

Transport Phenomena Commons

Open Access. Powered by Scholars. Published by Universities.®

346 Full-Text Articles 416 Authors 113,297 Downloads 38 Institutions

All Articles in Transport Phenomena

Faceted Search

346 full-text articles. Page 1 of 12.

Comparative Analysis Of Simulation Models Of The Production Of Ethylbenzene, Osariemen Imafidon 2020 University of Mississippi

Comparative Analysis Of Simulation Models Of The Production Of Ethylbenzene, Osariemen Imafidon

Honors Theses

Process Engineering is all about making sure a raw material can become the desired product with as little variation as possible, while achieving the customer's specifications. Many equipment used for chemical processes cannot be physically inspected during operation at steady state, hence, the need for simulation software. The objective of this study was to compare the results of three different simulation packages to evaluate their efficacy within process design.

This study focused on the economic analysis of the production of Ethylbenzene using various models. The base case variables were inputted into each model to simulate the calculations for a ...


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Michelle Dopp, Kevin Le, Ethan Phan, Mary Johnson, Jacqueline Payne, Adrian Damian, Courtney Golman 2020 University of Arkansas, Fayetteville

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Michelle Dopp, Kevin Le, Ethan Phan, Mary Johnson, Jacqueline Payne, Adrian Damian, Courtney Golman

Chemical Engineering Undergraduate Honors Theses

The Moo Pig Sooie’s researched, designed, and economically analyzed a full-scale adsorption column system to be applied in mining processes that leave high amounts of fluoride in their effluent. This system was designed to remove fluoride from water saturated with calcium sulfate, as calcium sulfate is present in high amounts in certain mining processes. Currently, high density sludge (HDS) is commonly employed to reduce fluoride concentrations, but due to solubility limits the sludge treatment cannot lower fluoride below 10 mg/L (ppm). The current enforceable EPA standard for discharged water is at 4 mg/L (ppm), although mining companies ...


The Effect Of Oxygen On Properties Of Zirconium Metal, Jie ZHAO 2020 University of Massachusetts Amherst

The Effect Of Oxygen On Properties Of Zirconium Metal, Jie Zhao

Doctoral Dissertations

The influence of oxygen on the thermophysical properties of zirconium has been investigated using MSL-EML (Material Science Laboratory Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations was subjected to multiple melt cycles during which the thermophysical properties, such as density, viscosity and surface tension, have been measured at various undercooled and superheated temperatures. Also, there are melt cycles for verifying the solidification mechanism. Similar samples were found to show anomalous nucleation of the solid for certain ranges ...


The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr. 2020 Louisiana State University and Agricultural and Mechanical College

The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr.

LSU Master's Theses

The mass transfer of a dissolved gas evolving to return to the gaseous phase from a liquid is governed by many parameters. This process affects the development of an oil and gas well due to the possibility of gas contamination occurring from either an influx entering the wellbore, or drilling through gas-bearing formations. Once this dissolved hydrocarbon gas circulates up the wellbore, it will begin to evolve from solution and poses a potential risk to drilling equipment, the environment, and personnel at a drilling rig. Being able to predict the behavior of gas desorption based on a known set of ...


A Study Of Particle-Laden Flows From Meso And Micro-Scale Perspectives, Daniel Guedes de Oliveira 2020 Louisiana State University

A Study Of Particle-Laden Flows From Meso And Micro-Scale Perspectives, Daniel Guedes De Oliveira

LSU Doctoral Dissertations

Particle-laden flows are investigated numerically from a meso-scale perspective using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) and from a micro-scale perspective using Particle Resolved Direct Numerical Simulation (PR-DNS). For the former, the dynamics of a pseudo-2D pulsed fluidized bed (PFB) consisting of 400,000 to 800,000 particles was investigated (Chapters 2 and 3). The focus is on the capabilities of CFD-DEM to (1) reproduce pattern formation in these systems and (2) further the understanding of the dynamics of PFB's as a function of pulsation parameters. In Chapter 4, a two-spheres system is investigated with a ...


A Comparison Of Fiber Mat Thickness Measurement Techniques Using Laser Interferometry And Water Displacement, Ryan Seabeck 2020 The University of Akron

A Comparison Of Fiber Mat Thickness Measurement Techniques Using Laser Interferometry And Water Displacement, Ryan Seabeck

Williams Honors College, Honors Research Projects

Polymer fiber mats may often be very thin which leads to complications in measuring thickness. The thickness of fiber mats, however, is crucial in understanding their behavior. Thickness affects how well the mat works as a filter as well as the pressure drop across the mat, and herein lies the need for accurate measurement techniques. Currently two of the available techniques for measuring mat thickness are by laser interferometry[1] and by buoyancy force when submerged in water[2]. Instead of measuring the buoyancy force in this experiment, an enclosure intended to measure the thickness via water displacement was fabricated ...


Chloride Effect In Fly Ash Geopolymer Cement, Evan Dimmick 2020 The University of Akron

Chloride Effect In Fly Ash Geopolymer Cement, Evan Dimmick

Williams Honors College, Honors Research Projects

The production of ordinary portland cement (OPC) poses a significant impact on the world's carbon dioxide emissions through the wide global use of concrete. Geopolymer cements (GPC) made from alkali activated fly ash can serve as a replacement to OPCs, reducing the carbon dioxide emissions by as much as 80%. GPCs exhibit adequate or superior mechanical performance to OPCs. The corrosion of carbon steel rebar in concrete occurs largely from chloride ion attack. The focus of this project will be to experimentally determine the coefficient of diffusion for chloride ions in GPCs and OPCs and compare to the corrosion ...


A Foundational Approach To Extrusion And Compounding, David Frankart 2020 The University of Akron

A Foundational Approach To Extrusion And Compounding, David Frankart

Williams Honors College, Honors Research Projects

With a history of nearly 200 years, polymer processing and compounding is constantly changing to fit the material science needs of the era. Exposure of undergraduate students to the technology and practices used in industry today in a lab setting would create new opportunities for experiential learning and growth. The objective was to set up a 0.75”, 25 L/D Thermo Haake single screw extruder for lab use and run trials of material in a single screw extruder to set up a basis for experiments. Trials were run of co-polyester resin through a single screw extruder with carbon fiber ...


Elucidating The Properties And Mechanism For Cellulose Dissolution In Tetrabutylphosphonium-Based Ionic Liquids Using High Concentrations Of Water, Brad Crawford 2020 West Virginia University

Elucidating The Properties And Mechanism For Cellulose Dissolution In Tetrabutylphosphonium-Based Ionic Liquids Using High Concentrations Of Water, Brad Crawford

Graduate Theses, Dissertations, and Problem Reports

The structural, transport, and thermodynamic properties related to cellulose dissolution by tetrabutylphosphonium chloride (TBPCl) and tetrabutylphosphonium hydroxide (TBPH)-water mixtures have been calculated via molecular dynamics simulations. For both ionic liquid (IL)-water solutions, water veins begin to form between the TBPs interlocking arms at 80 mol % water, opening a pathway for the diffusion of the anions, cations, and water. The water veins allow for a diffusion regime shift in the concentration region from 80 to 92.5 mol % water, providing a higher probability of solvent interaction with the dissolving cellulose strand. The hydrogen bonding was compared between small and ...


Towards Efficient Water Treatment: Mechanism Of Colloidal Fouling Of Ultrafiltration Membranes, Ikenna Henry Ozofor 2020 Michigan Technological University

Towards Efficient Water Treatment: Mechanism Of Colloidal Fouling Of Ultrafiltration Membranes, Ikenna Henry Ozofor

Dissertations, Master's Theses and Master's Reports

This research study first reviewed challenges of conventional and membrane separation systems for water treatment. Though membrane separation systems appeared superior to the conventional counterparts for water and wastewater treatment, wider applications of membrane systems have been limited by some factors, most notably is membrane fouling. Experimental studies were therefore conducted to achieve the goal of this research, which is to investigate how feed properties affect fouling of ultrafiltration (UF) membranes by colloids.

Feed salinity, pH, and nanoparticle concentration were the variables studied to unravel how different UF membranes are fouled by model silica colloids (with average diameter of 25nm ...


Applications Of Ionic Liquids In Membrane Separation, Mohanad Kamaz 2019 University of Arkansas, Fayetteville

Applications Of Ionic Liquids In Membrane Separation, Mohanad Kamaz

Theses and Dissertations

Ionic liquids represent an emerging attractive material in membrane technology. The central theme of this doctoral dissertation is to develope novel membranes using ionic liquids. Two different approaches were used to prepare ionic liquid membranes including the immobilization of ionic liquid within the membrane pores or the use of pressure assembly method to deposit a selective ionic liquid layer on the top membrane surface.

In chapter 2, imidazolium ionic liquids with three different alkyl halides were successfully synthesized and used to prepare supported ionic liquid membranes (SILMs). SILMs preraper were tested for aqueous and nonaqueous applications. For nonaqueous applications, the ...


Non-Invasive Detection And Assessment Of Coronary Stenosis From Blood Mean Residence Times., Javad Hashemi 2019 University of Louisville

Non-Invasive Detection And Assessment Of Coronary Stenosis From Blood Mean Residence Times., Javad Hashemi

Electronic Theses and Dissertations

Coronary artery stenosis is an abnormal narrowing of a coronary artery caused by an atherosclerotic lesion that reduces lumen space. Fractional flow reserve (FFR) is the gold standard method to determine the severity of coronary stenosis based on the determination of rest and hyperemic pressure fields, but requires an invasive medical procedure. Normal FFR is 1.0 and FFR RT, to account for varying volume and flow rate of individual segments. BloodRT was computed in 100 patients who had undergone the pressure-wire FFR procedure, and a threshold for BloodRT was determined to assess the physiological significance of a ...


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu 2019 Southern Methodist University

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


A Numerical Simulation Optimizing Droplet Motion Driven By Electrowetting, Jake M. Lesinski 2019 California Polytechnic State University, San Luis Obispo

A Numerical Simulation Optimizing Droplet Motion Driven By Electrowetting, Jake M. Lesinski

Master's Theses and Project Reports

A numerical simulation of electrowetting on a dielectric was performed in COMSOL to grant insight on various parameters that play a critical role in system performance. The specific system being simulated was the Open Drop experiment and the parameters being investigated were the applied voltage, contact angle at the advancing triple point, and droplet overlap onto neighboring actuated electrodes. These parameters were investigated with respect to their effect on droplet locomotion performance. This performance was quantified by the droplets velocity and the dielectrophortic (DEP) force’s magnitude; the DEP force was calculated from integration of the Maxwell Stress Tensor, however ...


Fluid Transport In Porous Media For Engineering Applications, Eric M. Benner 2019 University of New Mexico

Fluid Transport In Porous Media For Engineering Applications, Eric M. Benner

Chemical and Biological Engineering ETDs

This doctoral dissertation presents three topics in modeling fluid transport through porous media used in engineering applications. The results provide insights into the design of fuel cell components, catalyst and drug delivery particles, and aluminum- based materials. Analytical and computational methods are utilized for the modeling of the systems of interest. Theoretical analysis of capillary-driven transport in porous media show that both geometric and evaporation effects significantly change the time dependent behavior of liquid imbibition and give a steady state flux into the medium. The evaporation–capillary number is significant in determining the time-dependent behavior of capillary flows in porous ...


Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar 2019 University of Southern Mississippi

Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar

Dissertations

Crosslinked polymers are widely used due to its several advantages not limited to high mechanical strength combined with the easy processability. Despite of its popular usage, the fundamental understanding of polymer structure affecting the desired properties is still lacking. This PhD thesis is in two parts, the first part is devoted to the design and developing a basic understanding of structure and chemical composition dependencies of gas transport, whereas in the second part a fundamental relationship between structure to the fire-retardant properties is established.

Membrane based gas separation technique has attracted interest of selective removal of carbon dioxide gas from ...


Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya 2019 University of Maine

Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya

Electronic Theses and Dissertations

Barrier coating layers are important in many paper grades used in food packaging and have the potential to help reduce our use of plastics in some situations. Barrier layers to produce water proof packaging such as milk or juice cartons or coffee cups are common. Water based dispersion barrier coatings have the potential to be a low-cost alternative to extrusion coated layers. Water borne coatings are reported to be easy to recycle and break down in the environment. However, barrier properties are often less than what is desired and expected for these water borne coatings. The reason for this poor ...


Modeling Of Electrochemical Processes At The Magnesium Anode During Struvite Formation, Tobias Dwyer 2019 University of Arkansas, Fayetteville

Modeling Of Electrochemical Processes At The Magnesium Anode During Struvite Formation, Tobias Dwyer

Chemical Engineering Undergraduate Honors Theses

This study analyzes the current transients observed during the electrochemical formation of struvite from a solution of ammonium phosphate using a pure magnesium and magnesium alloy electrode. Through converting the chronoamperometric data to chronocoulometric data and fitting the data to various models, the driving mechanisms for struvite nucleation were elucidated. While the pure magnesium anode is controlled by only instantaneous nucleation at the electrode, the AZ31 alloy is nucleation controlled at short times and Cottrell diffusion controlled at long times.


Tactical Missile Performance For Single And Multi-Wire Embedded Propellant Configurations With Discontinuities, Paul B. Wilson 2019 Air Force Institute of Technology

Tactical Missile Performance For Single And Multi-Wire Embedded Propellant Configurations With Discontinuities, Paul B. Wilson

Theses and Dissertations

This research analyzes the performance of a nominal air-to-air tactical missile with varying configurations of wire-embedded end-burning solid propellant grains. Single and multi-wire models are developed to determine if total impulse and range is improved. Discontinuities in the wires are simulated to determine if gaps in the wire will affect overall performance. Five wire materials, seven wire diameters, and nine different break locations are tested. This research demonstrates wire discontinuities have negligible impact on performance and carbon nanotube fibers can theoretically improve total impulse by up to 25% compared to radially burning boost-phase grains while providing similar thrust outputs.


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli 2019 University of Massachusetts Amherst

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications.

Pore narrowing ...


Digital Commons powered by bepress