Open Access. Powered by Scholars. Published by Universities.®

Thermodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

504 Full-Text Articles 694 Authors 290,536 Downloads 71 Institutions

All Articles in Thermodynamics

Faceted Search

504 full-text articles. Page 1 of 20.

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco 2024 Embry-Riddle Aeronautical University

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco

Doctoral Dissertations and Master's Theses

Heat transfer of supercritical carbon dioxide (sCO2) was studied experimentally by commissioning a sCO2 flow loop featuring a horizontal tube-in-tube counterflow heat exchanger with a circular cross section. The main objective was to establish experimental heat transfer research capabilities for sCO2 at Embry-Riddle Aeronautical University’s (ERAU) Thermal Science Lab. sCO2 experiences a drastic change in thermophysical properties near its critical point that results in unique heat transfer characteristics. The high pressures at which sCO2 exists make the large gradients in thermophysical and transport properties difficult to study, experimentally and numerically. However, understanding the heat transfer characteristics and thermophysical behavior of …


Utilization Of Caputo Fractional Derivative In Mhd Nanofluid Flow With Soret And Thermal Radiation Effects, Harshad Patel, Gopal Nanda 2024 Ganpat University

Utilization Of Caputo Fractional Derivative In Mhd Nanofluid Flow With Soret And Thermal Radiation Effects, Harshad Patel, Gopal Nanda

Applications and Applied Mathematics: An International Journal (AAM)

In existence of heat diffusion and thermal radiation, an analytical equation is found for unsteady MHD flow past an exponentially accelerating vertical plate in optically thick water based nanofluid. The governing equations are made dimensionless by similarity transformation. A definition of Caputo fractional derivative is applied to generalize governing system of partial differential equations. Laplace transform techniques are applied and obtained the analytical solutions of proposed problems. For a physical point of view, numerical results are obtained using MATLAB software and presented via graphs. From the results, it is concluded that magnetic fields tend to reduce velocity. It is also …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale 2024 University of Denver

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …


Investigation Of Operational Parameter Differences Between The Standard Ron Test Method And Knock-Limited Modern Spark-Ignition Engine Operation, Alexander Hoth 2024 Michigan Technological University

Investigation Of Operational Parameter Differences Between The Standard Ron Test Method And Knock-Limited Modern Spark-Ignition Engine Operation, Alexander Hoth

Dissertations, Master's Theses and Master's Reports

Octane numbers (ONs) are used worldwide to rate the knock propensity of gasoline-like fuels for spark-ignition engines, making ONs the leading indicator of fuel quality for commercial distribution. The ONs were established 90 years ago and have only received minor changes compared to significant advancements in modern engine operation and fuel composition. This has resulted in discrepancies between knock-limited modern engine operation and standard ON ratings. This dissertation used a standard CFR octane rating engine at Argonne National Laboratory that was instrumented with modern combustion research tools to investigate key differences between the Research Octane Number (RON) rating conditions and …


Carbon Dioxide Gasification Of Biochar: A Study On Utilizing Captured Co2 To Mitigate Greenhouse Gas Emission And Improving Carbon Conversion Efficiency, Nnamdi Ofuani 2024 Student

Carbon Dioxide Gasification Of Biochar: A Study On Utilizing Captured Co2 To Mitigate Greenhouse Gas Emission And Improving Carbon Conversion Efficiency, Nnamdi Ofuani

Electronic Theses and Dissertations

With rapidly growing global economies and world population, fossil fuel continues to play a major role in meeting current energy demands. Carbon capture and storage (CCS) technologies have, hence, been implemented to reduce CO2 emissions in the atmosphere. With the implementation of CCS technologies comes the need to utilize the captured CO2. This research, therefore, proposes CO2 gasification of biochar as a viable carbon utilization pathway. With captured CO2 coming at various concentrations, there is a need to understand how CO2 concentration affects biochar conversion to useful products. This study, therefore, evaluates the effects …


Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava 2023 Pittsburg State University

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


Assessing The Thermodynamic Potential Of Deep Eutectic Solvents In The Absorption Of Greenhouse Gases Through Computational Methods., Thomas Michael Quaid 2023 Florida Institute of Technology

Assessing The Thermodynamic Potential Of Deep Eutectic Solvents In The Absorption Of Greenhouse Gases Through Computational Methods., Thomas Michael Quaid

Theses and Dissertations

Greenhouse gas (GHG) capture is a fundamental technology in the fight against climate change. Some species of devastating GHGs like fluorinated compounds are released directly to the air from industrial processes. Some GHGs are co-produced in sustainably derived biofuels which require absorptive upgrading. The development of more efficient, cost effective, and environmentally friendly methods of capturing GHG’s from pollutant sources and industrial streams is of utmost importance in the fight against climate change. Deep eutectic solvents have entered the separations stage as potential disruptors to conventional solvent choices for a variety of applications. Deep eutectic solvents (DES) are compounds of …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio 2023 Clemson University

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Assessing The Thermodynamic Potential Of Deep Eutectic Solvents In The Absorption Of Greenhouse Gases Through Computational Methods, Thomas Michael Quaid 2023 Florida Institute of Technology

Assessing The Thermodynamic Potential Of Deep Eutectic Solvents In The Absorption Of Greenhouse Gases Through Computational Methods, Thomas Michael Quaid

Theses and Dissertations

Greenhouse gas (GHG) capture is a fundamental technology in the fight against climate change. Some species of devastating GHGs like fluorinated compounds are released directly to the air from industrial processes. Some GHGs are co-produced in sustainably derived biofuels which require absorptive upgrading. The development of more efficient, cost effective, and environmentally friendly methods of capturing GHG’s from pollutant sources and industrial streams is of utmost importance in the fight against climate change. Deep eutectic solvents have entered the separations stage as potential disruptors to conventional solvent choices for a variety of applications. Deep eutectic solvents (DES) are compounds of …


Measuring Of Thermal Conductivity And Heat Capacity Of Different Papers And Heat-Sealing Process Of Papers With A Polymer Layer, Amenah Khalaf 2023 University of Maine

Measuring Of Thermal Conductivity And Heat Capacity Of Different Papers And Heat-Sealing Process Of Papers With A Polymer Layer, Amenah Khalaf

Electronic Theses and Dissertations

Packaging is an important and safe way to protect our food and other things through transportation, but the use of plastic based packaging is causing issues with plastic pollution. To replace plastic packaging with a paper-based option that has a barrier coating, good heat sealing will be needed to be a drop-in replacement. While much as been studied on the heat sealing of polymer layers, little has been reported around the heat sealing of paper that has a polymeric barrier coating.

Experiments were conducted to characterize the thermal conductivity and heat capacity of paper as a function of press pressure …


Use Of Photo Isomers To Enhance The Removal Of Lignin From Woody Biomass Hydrolysate, Dipesh J. Karki 2023 University of Maine

Use Of Photo Isomers To Enhance The Removal Of Lignin From Woody Biomass Hydrolysate, Dipesh J. Karki

Electronic Theses and Dissertations

In this investigation we propose a novel method to enable precipitation of desired solutes using photo-isomers in the extraction solvent. This photo-switchable solvent would enable dissolution or precipitation of desired components using alternating UV or visible light to modify the solubility of the compounds of interest. Three photo-isomers namely native azobenzene, diethoxy azobenzene and diethylamino azobenzene were studied in three different organic solvents: medium chain length alcohol, ethanol and acetone. It was found that among the different combinations of solvent and photo-isomer, acetone and the 4,4’-diethoxy azobenzene solution was most efficient at precipitating dissolved lignin in response to UV light …


Efficient Sintering Of Lunar Soil Using Concentrated Sunlight, Diprajit Biswas 2023 University of Maine

Efficient Sintering Of Lunar Soil Using Concentrated Sunlight, Diprajit Biswas

Electronic Theses and Dissertations

Construction material is one crucial need for long-term habitation on the moon. When concentrated for high heat flux, solar radiation can heat lunar soil or regolith until it sinters at temperatures above 900°C. The solid, sintered soil simulant can be used as construction material. This work explores the conditions leading to effective lunar soil sintering for both direct and indirect irradiated sintering. Lunar soil simulants were sintered using concentrated light from a xenon-arc lamp with varying heat flux intensity. During direct sintering of LHS-1, a sintering range of 860°C-1140°C corresponding to a peak heat flux of 105-120 kW/m2 was identified …


The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee 2023 The University of Maine

The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The dynamic penetration of fluid into a porous media where other changes are occurring such as temperature or concentration is of interest to a number of situations. However, little experimental and theoretical analysis of this situation is found in the literature where most of the previously published works have studied the penetration with constant physical properties, where there is no change of the fluid as it enters the pores. This situation is important in the setting of adhesives in porous medium such as in the setting of hot melt and water-based adhesives in the production of paper based packaging. The …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels 2023 University of Louisville

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Bridging The Gap Between Phase Behavior And Processing For Renewable And Refinable Carbonaceous Precursors, Graham Tindall 2023 Clemson University

Bridging The Gap Between Phase Behavior And Processing For Renewable And Refinable Carbonaceous Precursors, Graham Tindall

All Dissertations

As a category of materials, engineered carbons, specifically carbon fibers, are first-in-class for properties such as modulus, specific strength, and thermal resilience; however, the inability to directly process atomic carbon necessitates the development and optimization of carbonaceous precursors. Because the structure and properties of carbon are highly dependent on the precursors and requisite processing, numerous materials have been investigated as feedstocks for large-scale production. Although cellulose and rayon were among the first investigated, polyacrylonitrile (PAN) is the current hegemon of carbon fiber precursors. PAN feeds 90% of this market, but it is neither inexpensive nor renewable. Because a significant fraction …


Probing The Structure Of Water On Surfaces: From Water Absorption To Ice Nucleation, Jiarun Zhou 2023 Clemson University

Probing The Structure Of Water On Surfaces: From Water Absorption To Ice Nucleation, Jiarun Zhou

All Dissertations

Water, essential for all life forms, is the most abundant, simple, yet mysterious molecule in the world. This molecule, consisting of only three atoms, behaves in unexpectedly different ways with the change of environment. In the past, studies of water under different conditions (temperature, pressure, on the surfaces, with confinement) have been conducted using experimental and computational methods. However, the influence of a given environment on water properties is yet to be fully understood. This dissertation studies water at complex interfaces (surfaces with various chemistry and physics properties) in both the liquid and crystalline states. Various heterogeneous systems used to …


A Molecular Dynamics Study Of Structural Modifications Of Perarylphosphonium Based Ionic Liquids On The Melting Point, Johnathan Anderson 2023 University of South Alabama

A Molecular Dynamics Study Of Structural Modifications Of Perarylphosphonium Based Ionic Liquids On The Melting Point, Johnathan Anderson

<strong> Theses and Dissertations </strong>

Several perarylphosphonium based mesothermal ionic liquids (ILs) have been shown to be stable at high temperatures for prolonged periods of time and with high heat capacities making them good candidates for use in many processes such as usage as a heat transfer fluid, as an absorbent for separation of aromatics from aliphatics, and as a solvent for high temperature reactions. Many, however, have melting points above 100o C, limiting their use. Recently, it was shown that the melting point of an IL can be lowered by simply increasing the dipole moment of the cation or by structurally rigidifying the …


Heat Transfer From Plates, Leanza Trevino 2023 University of Arkansas, Fayetteville

Heat Transfer From Plates, Leanza Trevino

Chemical Engineering Undergraduate Honors Theses

The purpose of this honors thesis is to create an experiment for the CHEG Lab I course. This is a continuation of work done by Alexa Moreno. She created an experiment to model free convection of a horizontal plate. In this report, free and forced convection of a vertical and horizontal plate, respectively are modeled. This report explains the motivation for creating this heat convection experiment, the results of performing the experiment, and provides recommendations for future work on this experiment. Lab handouts are included in the Appendix.


Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq 2023 Louisiana State University and Agricultural and Mechanical College

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq

LSU Doctoral Dissertations

Colloids are a ubiquitous class of materials composed of microscopic particles suspended in a continuous phase which are found in everyday products and in nature. Colloids are also useful models for studying the spontaneous arrangement of matter from individual building blocks to mesophases. Standard treatment of colloid science is based on the assumption of equilibrium conditions, as defined in traditional thermodynamics. However, novel assembly mechanisms and motility are unlocked by pushing colloids away from equilibrium using external energy. In addition, many colloids in nature and in industrial applications exchange energy and mass with the surrounding environment thus behaving in a …


Supplementary Code For "Chain Trajectories, Domain Shapes And Terminal Boundaries In Block Copolymers", Benjamin R. Greenvall, Michael S. Dimitriyev, Gregory M. Grason 2023 University of Massachusetts Amherst

Supplementary Code For "Chain Trajectories, Domain Shapes And Terminal Boundaries In Block Copolymers", Benjamin R. Greenvall, Michael S. Dimitriyev, Gregory M. Grason

Data and Datasets

Supplementary code used for the publication "Chain trajectories, domain shapes and terminal boundaries in block copolymers" by Benjamin R. Greenvall, Michael S. Dimitriyev, and Gregory M. Grason. Includes code for extracting and analyzing polar order and chain trajectories from self-consistent field calculations of block copolymers.


Digital Commons powered by bepress