Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

419 Full-Text Articles 744 Authors 327,960 Downloads 59 Institutions

All Articles in Biomaterials

Faceted Search

419 full-text articles. Page 1 of 18.

Production And Biocompatibility Of Spider Silk Proteins In Goat Milk, Richard E. Decker Jr 2018 Utah State University

Production And Biocompatibility Of Spider Silk Proteins In Goat Milk, Richard E. Decker Jr

All Graduate Theses and Dissertations

Due to its strength, flexibility, and biocompatibility, spider silk is a highly appealing material for applications in the medical field. Unfortunately, natural spider silk is difficult to obtain in large quantities because spiders are territorial and cannibalistic, making them impractical to farm. Synthetic spider silk proteins produced by transgenic hosts such as bacteria and goats have made it possible to obtain the quantities of spider silk needed to study it more fully and to investigate its potential uses. The spider silk proteins produced in our laboratory do not have an optimal purification method to remove all of the non-biocompatible contaminants ...


Pneumatospinning Of Collagen Microfibers From Benign Solvents, Seth Polk, Nardos Sori, Nick Thayer, Yas Maghdouri-White, Anna A. Bulysheva, Michael P. Francis 2018 Old Dominion University

Pneumatospinning Of Collagen Microfibers From Benign Solvents, Seth Polk, Nardos Sori, Nick Thayer, Yas Maghdouri-White, Anna A. Bulysheva, Michael P. Francis

Medical Diagnostics & Translational Sciences Faculty Publications

Introduction. Current collagen fiber manufacturing methods for biomedical applications, such as electrospinning and extrusion, have had limited success in clinical translation, partially due to scalability, cost, and complexity challenges. Here we explore an alternative, simplified and scalable collagen fiber formation method, termed 'pneumatospinning,' to generate submicron collagen fibers from benign solvents. Methods and results. Clinical grade type I atelocollagen from calf corium was electrospun or pneumatospun as sheets of aligned and isotropic fibrous scaffolds. Following crosslinking with genipin, the collagen scaffolds were stable in media for over a month. Pneumatospun collagen samples were characterized using Fourier-transform infrared spectroscopy, circular dichroism ...


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li 2018 The University of Western Ontario

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim ...


Fabrication And Evaluation Of Poly(Lactic Acid), Chitosan, And Tricalcium Phosphate Biocomposites For Guided Bone Regeneration, Srikanthan Ramesh, Lisa Lungaro, Dimitrios Tsikritsis, Eric Weflen, Iris V. Rivero 2018 Iowa State University

Fabrication And Evaluation Of Poly(Lactic Acid), Chitosan, And Tricalcium Phosphate Biocomposites For Guided Bone Regeneration, Srikanthan Ramesh, Lisa Lungaro, Dimitrios Tsikritsis, Eric Weflen, Iris V. Rivero

Industrial and Manufacturing Systems Engineering Publications

This study presents and evaluates an approach for fabricating poly(lactic acid) (PLA)/chitosan (CS)/tricalcium phosphate (TCP) electrospun scaffolds for guided bone regeneration, a dental procedure that uses membranes to direct and delineate regions of osteogenesis. Biomaterials were pre‐processed using cryomilling, a solid‐state grinding technique that facilitates the generation of powdered biocomposites conducive to electrospinning. X‐ray diffraction (XRD) confirmed the generation of cryomilled blends consisting of PLA, CS, and TCP. Results from the differential scanning calorimetry showed an upward shift in glass transition temperature and an increase in crystallinity with the inclusion of TCP reinforcing the ...


Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker 2018 Indiana University of Pennsylvania

Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Mussels and other marine creatures adhere very well in underwater environments, having the ability to withstand the force of the sea. These animals have inspired synthetic biomimetic adhesives for wet systems, presenting potential for biomedical applications. However, most current commercial adhesives tend to be brittle, not resisting repetitive movements. This study assesses toughening strategies to improve the mussel-inspired adhesives’ ductility while maintaining its strength. The strategies included altering the polymer’s chemical structure by changing the percentage of polyethylene glycol (PEG) in the molecule and by adding fillers, such as calcium carbonate, silica and nacre - a calcium carbonate compound found ...


Piezoresponse, Mechanical, And Electrical Characteristics Of Synthetic Spider Silk Nanofibers, Nader Shehata, Ishac Kandas, Ibrahim Hassounah, Patrik Sobolčiak, Igor Krupa, Miroslav Mrlik, Anton Popelka, Jesse Steadman, Randolph Lewis 2018 Utah State University

Piezoresponse, Mechanical, And Electrical Characteristics Of Synthetic Spider Silk Nanofibers, Nader Shehata, Ishac Kandas, Ibrahim Hassounah, Patrik Sobolčiak, Igor Krupa, Miroslav Mrlik, Anton Popelka, Jesse Steadman, Randolph Lewis

Biology Faculty Publications

This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level ...


Engineering Graphene Oxide-Based Nanostructures For Dna Sensors, Aditya Balaji 2018 The University of Western Ontario

Engineering Graphene Oxide-Based Nanostructures For Dna Sensors, Aditya Balaji

Electronic Thesis and Dissertation Repository

Various nanostructures have been explored in DNA biosensors to convert the hybridization of DNA sequences to easily measurable processes, including optical, mechanical, magnetic, or electrochemical process. In this thesis, graphene oxide, a two-dimensional nanostructure, is applied in quenching the fluorescence of a core-shell nanoparticles modified with targeted DNA sequences. The core-shell nanoparticles, iron oxide (Fe3O4) core, and fluorescent silica (SiO2) shell, were produced through a wet chemical process which can directly link to a targeted DNA sequence (DNA-t), and the graphene oxide nanosheets were produced by the oxidation of graphite. In the meantime, a complementary- DNA ...


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora 2018 University of New Mexico - Main Campus

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation ...


Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone 2018 The University of Western Ontario

Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone

Electronic Thesis and Dissertation Repository

Tissue engineering scaffolds should support tissue maturation through exposure to biologically relevant stimuli and through successful cell infiltration. External electrical stimulation is particularly relevant for cardiac and neural applications, and requires conductive scaffolds to propagate electrical signals; cell infiltration is only possible with scaffolds that have sufficient porosity. The aim of this study was to impart conductivity and increased porosity of electrospun poly(ester amide) (PEA) scaffolds. Reduced graphene oxide (rGO) was incorporated into blend PEA and coaxial PEA-chitosan fibrous scaffolds, which increased scaffold conductivity and supported cardiac differentiation. The novel combination of ultrasonication and leaching of a sacrificial polymer ...


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman 2018 Southern Methodist University

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex ...


Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch 2018 University of Connecticut

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch

University Scholar Projects

Recent advances in the field of biomaterials have suggested that cells cultured on substrates resembling the native tissue mechanical properties, matrix and growth factor composition, and topography can adopt phenotypes that more closely resemble the in vivo tissue compared to cells cultured on non-mimetic constructs. Understanding the effect of culture substrate on in vitro tissue formation is important for bioengineering applications that include mechanistic studies of healthy tissue function and development of disease models. In this work, Caco-2 adenocarcinoma cells were seeded on flat and crypt-like topographies of 3D-printed cytocompatible hydrogels derived from silk fibroin protein. Silk hydrogels were selected ...


Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch 2018 University of Connecticut

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch

Honors Scholar Theses

Recent advances in the field of biomaterials have suggested that cells cultured on substrates resembling the native tissue mechanical properties, matrix and growth factor composition, and topography can adopt phenotypes that more closely resemble the in vivo tissue compared to cells cultured on non-mimetic constructs. Understanding the effect of culture substrate on in vitro tissue formation is important for bioengineering applications that include mechanistic studies of healthy tissue function and development of disease models. In this work, Caco-2 adenocarcinoma cells were seeded on flat and crypt-like topographies of 3D-printed cytocompatible hydrogels derived from silk fibroin protein. Silk hydrogels were selected ...


Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs 2018 University of New Mexico

Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs

Biomedical Sciences ETDs

Aortic valve disease (AVD) is a large contributor to health costs in the United States affecting 2.8% of the population greater than 75 years old. With a growing elderly population due to medical advances, AVD will continue to rise in prevalence over time. Current treatments for AVD are insufficient due to a lack of preventative therapies and the bioprosthetic valves used for surgical replacement have major limitations. Tissue engineered heart valves (TEHVs) present an ideal solution to current AVD needs because of their biocompatibility, capability to integrate with the host’s tissue, and ability to utilize the natural repair ...


Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims 2018 University of Louisville

Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims

Electronic Theses and Dissertations

A major challenge associated with delivery of active agents in the female reproductive tract (FRT) is the ability of agents to efficiently diffuse through the cervicovaginal mucosa (CVM) and reach the underlying sub-epithelial immune cell layer and vasculature. A variety of drug delivery vehicles have been employed to improve the delivery of agents across the CVM and offer the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract. Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular ...


Efficient Blue To Red Afterglow Tuning In A Binary Nanocomposite Plastic Film, Yan Xia, Huase Ou, Wanbin Li, Gang Han, Zhanjun Li 2018 Jinan University - China

Efficient Blue To Red Afterglow Tuning In A Binary Nanocomposite Plastic Film, Yan Xia, Huase Ou, Wanbin Li, Gang Han, Zhanjun Li

Open Access Articles

Colorful spectra are important for the diverse applications of persistent phosphors. A color conversion concept is developed to obtain abundant persistent luminescence color by mining capacities of known persistent phosphors with the most efficient persistent properties. Here, SiO(2)/Sr(2)MgSi(2)O(7):Eu,Dy nanoparticles are chosen as a blue persistent luminescence donor nanophosphor, while ultrafine CaAlSiN(3):Eu is utilized as a red conversion phosphor to tune the persistent luminescence spectra from blue to red. The red afterglow emission can persist for more than 5 h. The decay of the red afterglow follows nearly the same ...


Osteon Mimetic Scaffolding, Janay Clytus 2018 University of South Carolina - Columbia

Osteon Mimetic Scaffolding, Janay Clytus

Senior Theses

The purpose of this research is to provide an alternative to naturally derived bone grafts. There is a gap in the supply of donors and the demand of bone tissue. Artificial scaffold creation can work as an implant and decrease the shortage of bone grafts and increase the range of injuries that can be repaired. Current research focuses on optimizing mechanical properties such as porosity, improving vascularization using cells, and generating osteoconductivity. For osteodifferentiation, mesenchymal stem cells (MSCs) can differentiate into mesodermal lineages such as chondrocytes, osteoblasts, adipocytes, and tenocytes by supplementing cultures with lineage-specific soluble factors (Marchetti). Co-culturing ECFCs ...


Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer 2018 University of Louisville

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first ...


Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee 2018 Michigan Technological University

Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee

Bruce Lee

Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface ...


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal 2018 The University of Western Ontario

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale ...


Collective Adhesion And Displacement Of Retinal Progenitor Cells Upon Extracellular Matrix Substrates Of Transplantable Biomaterials, Ankush Thakur, Shawn Mishra, Juan Pena, Jing Zhou, Stephen Redenti, Robert Majeska, Maribel Vazquez 2018 CUNY City College

Collective Adhesion And Displacement Of Retinal Progenitor Cells Upon Extracellular Matrix Substrates Of Transplantable Biomaterials, Ankush Thakur, Shawn Mishra, Juan Pena, Jing Zhou, Stephen Redenti, Robert Majeska, Maribel Vazquez

Publications and Research

Strategies to replace retinal photoreceptors lost to damage or disease rely upon the migration of replacement cells transplanted into sub-retinal spaces. A significant obstacle to the advancement of cell transplantation for retinal repair is the limited migration of transplanted cells into host retina. In this work, we examine the adhesion and displacement responses of retinal progenitor cells on extracellular matrix substrates found in retina as well as widely used in the design and preparation of transplantable scaffolds. The data illustrate that retinal progenitor cells exhibit unique adhesive and displacement dynamics in response to poly-l-lysine, fibronectin, laminin, hyaluronic acid, and Matrigel ...


Digital Commons powered by bepress