Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

600 Full-Text Articles 1,006 Authors 547,859 Downloads 81 Institutions

All Articles in Biomaterials

Faceted Search

600 full-text articles. Page 6 of 27.

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma 2020 University of Massachusetts Amherst

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Effect Of Ambient Oxidation On Chemical Composition And Structural Properties Of Iron Nanoparticles For Hyperthermia And Medical Imaging, Adam Wesley Evans 2020 University of Tennessee, Knoxville

Effect Of Ambient Oxidation On Chemical Composition And Structural Properties Of Iron Nanoparticles For Hyperthermia And Medical Imaging, Adam Wesley Evans

Doctoral Dissertations

With magnetization saturation roughly twice that of iron oxide nanoparticles, metallic iron nanoparticles (also termed zero-valent iron nanoparticles) have desirable properties for use as a magnetic resonance imagining (MRI) contrast agent as well as a medium for hyperthermia treatment of cancer. Metallic iron nanoparticles, however, are difficult to synthesize and maintain due to their high degree of reactivity and proclivity for oxidation. The main goal of this study was to investigate how ambient oxidation affects the chemical composition and structural properties of metallic iron nanoparticles initially synthesized through a facile reduction reaction of iron (III) chloride with sodium borohydride. A …


The Use Of Nanoparticles And Electrospun Fibers For Intravaginal Delivery To Treat Viral And Bacterial Infections And Electrophysiological Measurements Of Synthetic Chloride Channels., Farnaz Minooei 2020 University of Louisville

The Use Of Nanoparticles And Electrospun Fibers For Intravaginal Delivery To Treat Viral And Bacterial Infections And Electrophysiological Measurements Of Synthetic Chloride Channels., Farnaz Minooei

Electronic Theses and Dissertations

Female reproductive viral and bacterial infections affect millions of women worldwide. Given the diversity and magnitude of these unmet reproductive health challenges, topical administration of antiretrovirals (ARVs) and antibiotics have emerged as promising approaches to maintain and restore reproductive health. However, currently available intravaginal dosage forms often suffer from low user adherence and the need for frequent, daily administration to achieve therapeutic effect. To address these challenges, the broad goal of this research was to focus on the development of new localized nanoparticle (NP) and electrospun fiber dosage forms to prolong the delivery and enhance the efficacy of active agents …


The Effects Of Solution Condition On Virus Filtration Performance, Fnu Namila 2020 University of Arkansas, Fayetteville

The Effects Of Solution Condition On Virus Filtration Performance, Fnu Namila

Graduate Theses and Dissertations

Virus filtration is an integral part of the downstream purification of mammalian cell culture-derived biotherapeutics to assure the viral safety of the products. Virus filtration membranes remove viruses based on a size-exclusion mechanism. Commercial parvovirus filers possess unique membrane structure and are designed to remove smaller non-enveloped parvoviruses with size 18-26 nm. However, some filters face issues, such as pre-mature fouling, the decline of filtrate flux, and reduction in virus retention. This doctoral dissertation focused on identifying the factors that influence the filtrate flux and the virus retention capability of commercial virus filters. The effects of solution pH and ionic …


A Note From The Editor, Daphne Fauber 2020 Purdue University

A Note From The Editor, Daphne Fauber

Ideas: Exhibit Catalog for the Honors College Visiting Scholars Series

This piece is a letter from Daphne Fauber, the editor of this issue of Ideas. In the letter, the editor introduces the work of Dr. Paschalis Gkoupidenis as well as the moment in time in which his Visiting Scholars talk occurs.


Evaluation Of Hyaluronic Acid To Modulate Oral Squamous Cell Carcinoma Growth In Vitro, Jordan Ringer, Bryan Morrison, Karl Kingsley 2020 University of Nevada, Las Vegas

Evaluation Of Hyaluronic Acid To Modulate Oral Squamous Cell Carcinoma Growth In Vitro, Jordan Ringer, Bryan Morrison, Karl Kingsley

Dental Medicine Faculty Publications

© 2020 MDPI AG. All rights reserved. Introduction: Previous studies have demonstrated that glycosaminoglycan hyaluronic acid (HA) is capable of mediating oral tumor growth. Some clinical evidence has suggested reduced HA expression predicts poor cancer prognosis and that HA-chemotherapy conjugates may function synergistically to inhibit oral tumor growth. Other studies have found conflicting results that suggest enhanced CD44-HA-mediated growth and proliferation. Due to the lack of clarity regarding HA function, the primary goal of this study was to investigate the effects of HA using well-characterized oral cancer cell lines. Methods: Using several commercially available oral squamous cell carcinoma lines (and …


Optimal Parameter Values For Accurate And Repeatable Nanoindentation Of Human Trabecular Bone, Stephen Matthew Kmak 2020 California Polytechnic State University, San Luis Obispo

Optimal Parameter Values For Accurate And Repeatable Nanoindentation Of Human Trabecular Bone, Stephen Matthew Kmak

Master's Theses

Nanoindentation techniques have not been standardized for use on bone tissues, making comparison of bone material properties obtained via nanoindentation across studies difficult and unreliable. This study determined a set of optimal parameter values for thermal drift correction time, dwell time, and loading rate that can be used to obtain accurate and repeatable material properties from human femoral trabecular bone through experimentation and statistical analysis. All testing was conducted using a single nanoindenter on a single trabeculae, with the assumption that material properties within the individual trabeculae were internally consistent. Parameters not of interest during this study, such as ambient …


Decellularization Of Porcine Cartilage Promotes Chondrogenic Differentiation Of Human Chondrocytes, Roxanne Nicole Stone 2020 Boise State University

Decellularization Of Porcine Cartilage Promotes Chondrogenic Differentiation Of Human Chondrocytes, Roxanne Nicole Stone

Boise State University Theses and Dissertations

Knee osteoarthritis (knee OA) is the most common type of osteoarthritis (OA) and accounts for 70% of arthritis-related hospital admissions and 23% of clinical visits. Major limitations in both the current non-surgical and surgical methods are that they only relieve pain and show no evidence for restoring natural tissue anatomy. Leaders in the field propose that a stem cell treatment approach holds promise for the regeneration of a greater proportion of hyaline-like tissue at the repair site. (Cross et al., 2014; Escobar Ivirico, Bhattacharjee, Kuyinu, Nair, & Laurencin, 2017; Helmick et al., 2008; Toh, Foldager, Pei, & Hui, 2014).

It …


Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter 2020 University of Massachusetts Amherst

Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter

Doctoral Dissertations

Metastasis is the leading cause of cancer related deaths, yet it remains the most poorly understood aspect of tumor biology. This can be attributed to the lack of relevant experimental models that can recapitulate the complex and lengthy progression of metastatic relapse observed in patients. Mouse models have been widely used to study cancer, however they are critically limited to study metastasis. Most models generate aggressive metastases in the lung without the use of unique cell lines or specialized injection techniques. This limits the ability to study disseminated tumor cells (DTCs) in other relevant metastasis prone tissues. Prolonged observation of …


Development Of Hybrid Coating Materials To Improve The Success Of Titanium Implants, Zach Gouveia 2020 The University of Western Ontario

Development Of Hybrid Coating Materials To Improve The Success Of Titanium Implants, Zach Gouveia

Electronic Thesis and Dissertation Repository

While titanium (Ti) and its alloys have become ubiquitous within implantology as materials to restore or augment the function of human tissues, their success is plagued by complications associated with infection and aseptic implant loosening. These two risks account for the majority of implant failures in the clinic and limit the long-term success of titanium implants in vivo. Therefore, this thesis describes the development of robust multifunctional class II organic-inorganic hybrid coating materials for titanium implants that could be used to effectively target both complications, concurrently. During this master’s work, two different coating systems were examined. First, class II …


Impact Of Wtrs In A Saturated Bioretention System, Troy Membrere, Cara J. Poor 2020 University of Portland

Impact Of Wtrs In A Saturated Bioretention System, Troy Membrere, Cara J. Poor

Engineering Undergraduate Publications, Presentations and Projects

No abstract provided.


Designing Silk Protein-Based Composite Materials With Tunable Heat Transfer And Magnetic Properties, Ye Xue 2020 Rowan University

Designing Silk Protein-Based Composite Materials With Tunable Heat Transfer And Magnetic Properties, Ye Xue

Theses and Dissertations

Renewable and biocompatible silk protein materials with desired physical properties show promising applications in biomedical field. In this work, a set of protein-based composites with desired thermal and magnetic properties, enhanced by the appropriate distribution of nanofillers in the protein matrix in both 2D-film and 1D-fiber forms was investigated. Results indicate that secondary structures of silk protein materials regenerated by a formic acid-calcium chloride method are different from those of their respective natural silk fibers. Intramolecular beta-sheet structures were found to dominate these silk films, causing these regenerated samples to be water-insoluble but more flexible than traditional silk films with …


Metal Additive Manufacturing For Fixed Dental Prostheses, Mai EL Najjar 2020 The University of Western Ontario

Metal Additive Manufacturing For Fixed Dental Prostheses, Mai El Najjar

Electronic Thesis and Dissertation Repository

The use of additive manufacturing (AM) in dentistry has gained momentum in recent years. However, high initial costs and uncertainty surrounding the quality of AM products are considered barriers to their use. This research compared dental substructures fabricated by AM versus conventional casting and milling.

Cobalt-chromium alloy rectangular bars and three-unit bridge substructures were fabricated by AM, casting or milling. Bars manufactured by AM exhibited superior flexural strength, shear bond strength of porcelain coating, and Vickers hardness. Bridge substructures fabricated by AM showed similar flexural stiffness to cast, similar flexural loads at failure to milled and cast, and overall accuracy …


3d Culture Strategies For The Dynamic Expansion And Preconditioning Of Adipose-Derived Stromal Cells On Decellularized Adipose Tissue Bioscaffolds, Tim Tian Han 2020 The University of Western Ontario

3d Culture Strategies For The Dynamic Expansion And Preconditioning Of Adipose-Derived Stromal Cells On Decellularized Adipose Tissue Bioscaffolds, Tim Tian Han

Electronic Thesis and Dissertation Repository

Adipose tissue engineering holds promise for the development of therapeutic strategies for subcutaneous adipose tissue regeneration to treat defects resulting from congenital birth defects, invasive surgical procedures and traumatic injuries. Decellularized adipose tissue (DAT) scaffolds represent a potential off-the-shelf tissue substitute for volume augmentation. Seeding the DAT with adipose-derived stromal cells (ASCs) has been shown to enhance adipose tissue regeneration in immunocompetent animals in vivo. Although promising, this strategy is limited by low cell attachment on the DAT. As such, this thesis focused on the development of bioreactor strategies to enhance the capacity of human ASCs to stimulate angiogenesis …


Effects Of Hard-To-Soft Segment Ratios On The Synthesis And Physico-Mechanical Properties Of Polyurethane Films, Aaron C. Wilson 2020 University of Texas at Tyler

Effects Of Hard-To-Soft Segment Ratios On The Synthesis And Physico-Mechanical Properties Of Polyurethane Films, Aaron C. Wilson

Mechanical Engineering Theses

Blood-contacting cardiovascular stents often induce a secondary clotting event due to unrestricted enzymatic activities. The use of hemocompatible polyurethane coatings on these implantable devices is one of the most promising methods to reduce device rejection. In this study, four commercial polyurethane films of various thicknesses and compositions were evaluated for their anticoagulation properties. Results suggested that these films exhibited excellent thermal and physico-mechanical properties while capable of increasing contact time with blood plasma by over a thousand-fold as compared to a control surface. Due to the unknown structure and composition of these commercial films, polyurethane samples were synthesized from toluene …


Pilot Study Exploring The Effect Of Targeted Cox-2 Inhibition In Macrophages Responding To Neuronal Injury; Promoting Enhanced Axonal Regeneration, Alyssa Brauckmann 2020 Duquesne University

Pilot Study Exploring The Effect Of Targeted Cox-2 Inhibition In Macrophages Responding To Neuronal Injury; Promoting Enhanced Axonal Regeneration, Alyssa Brauckmann

Electronic Theses and Dissertations

Celecoxib nanoemulsion (CXB-NE) has been developed as a macrophage targeted analgesics by Dr. Janjic and her team at Duquesne University, (Janjic et al, 2018; Liu et al, 2020; Saleem et al, 2019b; Vasudeva et al, 2014). The CXB-NE nanoemulsion carrying a Nonsteroidal Anti-inflammatory (NSAID) inhibitor of COX-2 activity result in a reduction in PGE2 expression in macrophages. Using CXB-NE in rats that have peripheral nerve injury constricting the sciatic nerve relieves hypersensitivity, a pain-like behavior. The treatment also decreases inflammation associated with this chronic constriction injury (Janjic et al, 2018; Saleem et al, 2019b; Stevens et al, 2019). In this …


Design Of A 3d Printed Bioreactor For Bone Cancer Research, Brooklyn K. VanDerWolde, Katelyn Hillson 2020 South Dakota State University

Design Of A 3d Printed Bioreactor For Bone Cancer Research, Brooklyn K. Vanderwolde, Katelyn Hillson

The Journal of Undergraduate Research

Bone cancer is an aggressive disease and has peak occurrence during physiological stimulation of growth and aging. Astronauts who undergo long-term space missions also acquire an increased risk of bone tissue degeneration and cancer. Few in-vitro models currently exist capable of reproducing the complex microenvironment of bone tissue to support multicellular activity in a three-dimensional structure. This limits the ability to understand disease progression and develop suitable treatment strategies. Therefore, developing a bone tissue model and an associated bioreactor is critical to understand the risks associated with cancer progression and improve treatment and preventions related to those risks. The goal …


Analysis Of Blood Purification Studies On Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes, Tony Roller 2020 University of Arkansas, Fayetteville

Analysis Of Blood Purification Studies On Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes, Tony Roller

Biomedical Engineering Undergraduate Honors Theses

End-stage renal disease (ESRD) is currently the ninth leading cause of death in the United States, and of the 661,00 Americans diagnosed with ESRD, approximately 468,800 were on hemodialysis in 2016. Hemodialysis refers to a technique where a machine combined with a membrane, often referred to as an artificial kidney, is used to clean blood by removing any waste such as urea, potassium, and other smaller waste products while preserving the concentrations and integrity of cells and proteins in the blood. It has been shown in artificial blood studies that cellulose nanomaterials, like TEMPO/Oxidized cellulose nanoparticles (TOCNs), can be integrated …


Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling 2020 University of Arkansas, Fayetteville

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling

Biomedical Engineering Undergraduate Honors Theses

The ninth leading cause of death in the United States is kidney disease, and hemodialysis is the process most commonly prescribed for treatment. It utilizes a selectively permeable membrane filter to remove toxins such as urea from the blood and retain necessary protein levels. However, traditional filters, such as cellulose triacetate, used during dialysis can be inefficient in terms of separation performance and reduction of fouling. Recent exploration of nanoparticles has resulted in the creation of Oxone Mediated TEMPO-Oxidized Nano Cellulose which has properties that are believed to increase hydrophilicity, increase tensile capacity, decrease membrane resistance and lower fouling, making …


Modified Stent Design For A Coronary Bifurcation Lesion, Abigail Nowell 2020 University of Arkansas, Fayetteville

Modified Stent Design For A Coronary Bifurcation Lesion, Abigail Nowell

Biological Sciences Undergraduate Honors Theses

Currently, 18.2 million adults aged 20 and older are diagnosed with Coronary Artery Disease (CAD) (Benjamin et al., 2019). Stenosis is the most common intervention. However, when a patient has a bifurcated artery, treatment becomes more difficult and is often unsuccessful. This project created a new stent and balloon complex that was tested in vitro using a gel phantom artery model. Two separate prototypes have been created and tested so far, with improvements made upon each. Testing is still underway with Prototype 2.


Digital Commons powered by bepress