Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

599 Full-Text Articles 1,005 Authors 547,859 Downloads 81 Institutions

All Articles in Biomaterials

Faceted Search

599 full-text articles. Page 4 of 27.

3d Printed Polypyrrole Scaffolds For Ph Dependent Drug Delivery With Applications In Bone Regeneration, Matthew T. Lawrence 2021 The University of Western Ontario

3d Printed Polypyrrole Scaffolds For Ph Dependent Drug Delivery With Applications In Bone Regeneration, Matthew T. Lawrence

Electronic Thesis and Dissertation Repository

Areas of large bone loss are typically healed using autologous bone grafts, seen as the gold standard of care. These materials have a complication rate of 10–40% during harvesting and are limited by the quantity available; therefore the use of 3D printed polymer scaffolds as bone graft alternatives are proposed. Polypyrrole (PPy) is a biocompatible electroactive polymer that has metal-like electrical properties that can be harnessed to hold and release charged drug molecules, triggered by a change in pH. pH fluctuations are seen inside the human body in areas of bone regrowth, which would act as the triggering mechanism for …


The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do 2021 California Polytechnic State University, San Luis Obispo

The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do

Biomedical Engineering

Gangrene, pain, loss of limb function, amputation, and death are only few of the grievous consequences associated with peripheral arterial disease (PAD), a vascular disease caused by an obstruction that narrows the blood vessels. Since some patients have collateral vessels that can re-route blood to its downstream destination, much focus has been spotlighted upon discovering the mechanism of this process, termed arteriogenesis, as well as cell therapies to increase arterial diameter of collateral vessels. Since some patients do not have native pre-existing collateral vessels, another method to re-route blood is through arterialized collateral capillaries (ACC), which is the conversion of …


Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham 2021 California Polytechnic State University, San Luis Obispo

Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham

Master's Theses

The Tissue Engineering Research Lab at California Polytechnic State University, San Luis Obispo focuses on creating tissue-engineered blood vessel mimics (BVMs) for use in preclinical testing of vascular devices. These BVMs are composed of electrospun scaffolds made of an assortment of polymers that are seeded with different cell types. This integration of polymers with cells leads to the need for biocompatibility testing of the polymer scaffolds. Many of the lab’s newest scaffolds have not been fully characterized for biologic interactions. Therefore, the first aim of this thesis developed methods for in vitro cytotoxicity testing of polymers used in the fabrication …


Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender 2021 University of Connecticut

Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender

University Scholar Projects

One of the most common causes of bone graft rejection is lack of a vascular network connecting the graft to the existing native tissue – allowing for nutrient flow. Under current grafting techniques, the existing blood vessel network in the patient slowly invades the implant in order to supply the injured site with its necessary nutrients. The purpose of this research is to determine if a synthetic bone graft with a stable microvascular network can be developed in vitro. I hypothesize that the use of indirect angiogenic factors such as sonic hedgehog homolog and hypoxia-inducible factor-1 in combination with the …


Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender 2021 University of Connecticut

Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender

Honors Scholar Theses

One of the most common causes of bone graft rejection is lack of a vascular network connecting the graft to the existing native tissue – allowing for nutrient flow. Under current grafting techniques, the existing blood vessel network in the patient slowly invades the implant in order to supply the injured site with its necessary nutrients. The purpose of this research is to determine if a synthetic bone graft with a stable microvascular network can be developed in vitro. I hypothesize that the use of indirect angiogenic factors such as sonic hedgehog homolog and hypoxia-inducible factor-1 in combination with the …


Effect Of Developer Temperature On Photoresist Contrast In Grayscale Lithography, Dale Farnan, George Patrick Watson 2021 Singh Center for Nanotechnology

Effect Of Developer Temperature On Photoresist Contrast In Grayscale Lithography, Dale Farnan, George Patrick Watson

Protocols and Reports

SPR 220-3 photoresist was spin-coated onto a silicon wafer, exposed using a Heidelberg DWL66+ laserwriter at different laser powers, and developed at different temperatures. The effect of developer temperature on photoresist contrast was examined. Results show that increasing developer temperature decreased photoresist contrast and increased required dose.


Survival And Proliferation Under Severely Hypoxic Microenvironments Using Cell-Laden Oxygenating Hydrogels, Shabir Hassan, Berivan Cecen, Ramon Peña-Garcia, Fernanda R. Marciano, Amir K. Miri, Ali Fattahi, Christina Karavasili, Shikha Sebastian, Hamza Zaidi, Anderson O. Lobo 2021 Rowan University

Survival And Proliferation Under Severely Hypoxic Microenvironments Using Cell-Laden Oxygenating Hydrogels, Shabir Hassan, Berivan Cecen, Ramon Peña-Garcia, Fernanda R. Marciano, Amir K. Miri, Ali Fattahi, Christina Karavasili, Shikha Sebastian, Hamza Zaidi, Anderson O. Lobo

Henry M. Rowan College of Engineering Faculty Scholarship

Different strategies have been employed to provide adequate nutrients for engineered living tissues. These have mainly revolved around providing oxygen to alleviate the effects of chronic hypoxia or anoxia that result in necrosis or weak neovascularization, leading to failure of artificial tissue implants and hence poor clinical outcome. While different biomaterials have been used as oxygen generators for in vitro as well as in vivo applications, certain problems have hampered their wide application. Among these are the generation and the rate at which oxygen is produced together with the production of the reaction intermediates in the form of reactive oxygen …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen 2021 University of Arkansas, Fayetteville

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins 2021 University of Arkansas, Fayetteville

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness 2021 University of Arkansas, Fayetteville

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness

Chemical Engineering Undergraduate Honors Theses

Often in the aftermath of an injury or surgery, the sense of touch and muscle control is lost in the affected area as nerves are damaged or severed and fail to grow back completely. The regeneration of the nerve cells can be promoted by treating the nerves with nerve conduits. Nerve conduits are hollow cylinders of bio-compatible materials that can be surgically implanted to the disconnected nerve to promote and direct the growth of nerves. The objectives of this research are to investigate the ability of nerve conduits treated with layer-by-layer coatings to promote the growth of Schwann cells, to …


Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts 2021 University of Arkansas, Fayetteville

Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts

Graduate Theses and Dissertations

Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. They have the potential for use in biomedical applications due to their resistance to proteolytic degradation and low immunogenicity. This dissertation focuses on the physical characteristics and robustness of the peptoid microsphere coatings in various physiological conditions, along with their ability to …


Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter 2021 The University of Maine

Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter

Electronic Theses and Dissertations

Peripheral neuropathy is estimated to afflict 20 million people in the United States. Most cases of neuropathy result from physical injuries and trauma arising from automobile accidents and war. Peripheral nerves have the intrinsic ability to regenerate over time, bridging the injury gap. However native regeneration is limited to a distance of only a few millimeters. Current methods utilized to assist in the regeneration of peripheral nerves over distances exceeding those amenable to native repair include nerve autografts and allografts, and implantation of conduits. Nerve autografts are regarded as the most effective method but require a second surgical site to …


Immunomodulatory Biomaterials For Cancer Immunotherapy, Larry Donnell Stokes Jr 2021 University of Mississippi

Immunomodulatory Biomaterials For Cancer Immunotherapy, Larry Donnell Stokes Jr

Honors Theses

Cancer immunotherapy has become an effective treatment in the toolbox of oncologists. Immunotherapy offers a less toxic alternative to standard cancer treatments such as chemotherapy and can have prolonged curative effects to decrease cancer recurrence. Today, many drugs and biological agents have been developed that target the immune system and elicit an antitumor/cancer response. These agents are known collectively as cancer immunotherapies. While immunotherapies have radically improved treatment outcomes for many cancer patients, there are drawbacks to using these treatments. Immunotherapy treatments have poor clinical responses in patients with tumors that lack immunogenicity. Some of the treatments also pose a …


The Role Of Spider Silk In Peripheral Nerve Regeneration, Langston Forbes-Jackson 2021 William & Mary

The Role Of Spider Silk In Peripheral Nerve Regeneration, Langston Forbes-Jackson

Undergraduate Honors Theses

Spider silk neural guidance channels (NGCs) are highly important innovations in the field of regenerative medicine. This paper will discuss the evidence in the literature that supports their function in regenerative medicine and provide a template for future experiments in the field. While many studies within the past 15 years have demonstrated the validity of spider silk as a scaffold for peripheral nerve regeneration, the molecular mechanics that facilitate regeneration are poorly understood. An emphasis on using silk from orb weaving spiders in particular may have caused researchers to overlook other spiders whose silk could prove to have vastly different …


Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen 2021 University of Arkansas, Fayetteville

Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen

Graduate Theses and Dissertations

Cellulose is an abundant and naturally occurring biopolymer that has been used by humans for food, shelter, and clothing for about two centuries now. Highly crystalline nanoparticles derived from cellulose, called cellulose nanocrystals (CNCs), show great potential to meet the rising need for sustainable and nontoxic materials for biomedical applications. However, multiple biomedical applications of CNCs, such as those involving their use in tissue engineering scaffolds, require CNC-based structures to be stable in aqueous environments, a property that native CNCs do not possess due to their inherent hydrophilicity. Chemical crosslinking of CNCs addresses this issue by providing aqueous stability to …


Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong 2021 The University of Western Ontario

Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong

Electronic Thesis and Dissertation Repository

Moisture inside the mouth adds challenge to making denture adhesives formulations. Some formulations have zinc to enhance adhesion on wet skin despite knowing the health hazards. Inspired by mussel foot proteins’ catechol unit’s strong underwater adhesion, nine catechol-containing copolymers (P1A-P3C) were synthesized by free radical polymerization of 3,4-dimethoxystyrene (3,4- DMS) with different styrene derivatives followed by deprotection. P1A-P3C were used to make Fn(P)-C-PBS denture adhesive formulations which had suitable shear stresses around ≥ 5 kPa satisfying ISO 10873. In-situ NMR studies of free radical polymerization of 3,4 - DMS and styrene derivatives allowed computation of their reactivity ratios showing all …


Extracellular Matrix-Derived Microcarriers As 3-D Cell Culture Platforms, Anna Kornmuller 2021 The University of Western Ontario

Extracellular Matrix-Derived Microcarriers As 3-D Cell Culture Platforms, Anna Kornmuller

Electronic Thesis and Dissertation Repository

Recognizing the cell-instructive capacity of tissue-specific extracellular matrix (ECM) to direct cell attachment, proliferation and differentiation, there is a need for the development of in vitro cell culture models that reflect the complexity of the ECM to improve stem/progenitor cell expansion and lineage-commitment. This thesis focused on the development and characterization of ECM-derived microcarriers for the in vitro dynamic culture and expansion of stromal cells for cell therapy and tissue engineering applications.

To develop novel platforms for use in dynamic culture systems, initial work focused on applying electrospraying techniques to fabricate microcarriers from decellularized dermal tissue (DDT) and decellularized myocardial …


Handling And Manipulation Of Water- And Air- Borne Biological Samples Using Liquid-Infused Surfaces, Daniel P. Regan 2021 University of Maine

Handling And Manipulation Of Water- And Air- Borne Biological Samples Using Liquid-Infused Surfaces, Daniel P. Regan

Electronic Theses and Dissertations

Research on novel materials to handling water- and airborne samples for biological threats analysis is in great demand due to the COVID-19 pandemic. Work conducted on a new field of material science, called liquid-infused surfaces, demonstrate strong potential for the handling and manipulation of biological samples. As a result of the field’s infancy, only a limited number of studies have explored how liquid-infused surfaces can apply droplet manipulation strategies to address real-world problems. Presented in this dissertation are two platforms that leverage liquid-infused surfaces to address the challenges associated with handling water- and airborne biological samples. When dealing with waterborne …


Surface-Eroding Drug Delivery Films For Sequential And/Or Intermittent Release Of Psychoactive Drugs, Jason Price 2021 University of Mississippi

Surface-Eroding Drug Delivery Films For Sequential And/Or Intermittent Release Of Psychoactive Drugs, Jason Price

Honors Theses

ABSTRACT JASON BLAKE PRICE: Surface-Eroding Drug Delivery Films for Sequential and/or

Intermittent Release of Psychoactive Drugs For patients with psychiatric diseases, adherence to medication schedules, medication

errors, and abuse are common issues. Promising new forms of therapy for these patients, such as micro-dosed lysergic acid diethylamide (LSD), where patients receive 10-20% of a full dose every third day, present further drug delivery challenges. Sequential or intermittent release of drugs from an implanted device could ensure long-term drug compliance, automate drug dosing during the life of the implant, and eliminate potential for abuse and medication errors. To this end, we generated …


Fibrin-Based Engineered Vascular Tissues As Platforms For Cellular Studies And Disease Modeling, Khalil Dayekh 2021 The University of Western Ontario

Fibrin-Based Engineered Vascular Tissues As Platforms For Cellular Studies And Disease Modeling, Khalil Dayekh

Electronic Thesis and Dissertation Repository

Vascular tissue engineering (VTE) is an emerging alternative therapeutic intervention strategy to treat diseases such as atherosclerosis. While the ultimate goal of VTE is designing tissues to serve as graft substitutes, they can also serve as powerful tools to study tissue and disease development and drug discovery.

In this work, engineered vascular tissues from fibrin gel, mouse embryonic multipotent progenitor cell line (10T1/2 cells), and rat embryonic thoracic artery smooth muscle cells (A-10 cells) were used as models to study the Notch signaling pathway and vascular calcification. The 10T1/2 cells were successfully differentiated into vascular smooth muscle cells with TGFβ1 …


Digital Commons powered by bepress