Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

241 Full-Text Articles 537 Authors 56421 Downloads 31 Institutions

All Articles in Molecular, Cellular, and Tissue Engineering

Faceted Search

241 full-text articles. Page 1 of 9.

Bone Tissue Engineering: Scalability And Optimization Of Densified Collagen-Fibril Bone Graft Substitute Materials, John G. Nicholas, Lauren E. Watkins, Sherry L. Voytik-Harbin 2016 Purdue University

Bone Tissue Engineering: Scalability And Optimization Of Densified Collagen-Fibril Bone Graft Substitute Materials, John G. Nicholas, Lauren E. Watkins, Sherry L. Voytik-Harbin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Over 240 million people missing teeth worldwide experience lingering problems such as difficulty speaking and eating, undesirable aesthetics, and resorption of bone supporting neighboring teeth. The gold standard of treatment utilizes grafts to attach a function-restoring implant to supporting bone. Current graft materials suffer from problems including autologous donor site morbidity, long resorption time, incomplete integration with the maxillae or mandible, and structural weakness. Patient-specific, cellularized bone grafts may be a solution to these issues by accelerating and improving the quality of regenerated bone. Recently, encapsulation of mesenchymal stem cells within self-assembling type I collagen oligomer matrices has been shown ...


Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum 2016 Purdue University

Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lower back pain from intervertebral disc injury affects around 84% of the population at some point in their life, which at its worst may cause total immobilization. This pain can only be temporarily relieved by spinal fusion or intervertebral disc replacement; however, both of these cause loss of natural motion in patients by removing damaged fibrocartilage discs. While these techniques help mitigate pain briefly, no permanent solution exists currently to both relieve pain and preserve natural motion. My work may be a solution by eventually providing patient-specific implants that resemble native tissue in the regeneration process that could be absorbed ...


Lysis And Amplifciation Of Neonatal Sepsis Causing Pathogens, Gregory Berglund, Elizabeth A. Phillips, Jacqueline C. Linnes 2016 Purdue University

Lysis And Amplifciation Of Neonatal Sepsis Causing Pathogens, Gregory Berglund, Elizabeth A. Phillips, Jacqueline C. Linnes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neonatal sepsis, resulting from a bloodstream infection within the first few weeks of life, is the leading cause of newborn deaths worldwide. The gold standard of neonatal sepsis diagnosis requires a blood culture to identify the infecting bacteria, however require days of incubation, expensive equipment, and expertise. Any delay in diagnosis is critical, as the condition can be treated easily if appropriate antibiotics are administered promptly. A low-cost, rapid, and sensitive diagnostic test would enable more timely treatment and lead to better patient outcomes with fewer required resources. Point-of-care, nucleic acid amplification assays are a promising alternative to blood culture ...


Optimization Of The Design Of An Amphiphilic Biodegradable Polymer For Tissue-Engineering Application, Ben Zhang, Tera M. Filion, Jie Song 2016 University of Massachusetts Medical School

Optimization Of The Design Of An Amphiphilic Biodegradable Polymer For Tissue-Engineering Application, Ben Zhang, Tera M. Filion, Jie Song

Jie Song

Biodegradable polymers have been widely utilized as drug delivery vehicles and tissue engineering scaffolds. We previously designed amphiphilic triblock copolymer poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PELA) and its hydroxyapatite (HA) composites for bone tissue engineering applications. The hydrophilic electrospun PELA-HA composite exhibited aqueous stability and elastic handling characteristics, and was able to template the proliferation and osteogenesis of bone marrow stromal cells (BMSCs) in vitro and in vivo when spiral-wrapped into cylinders and press-fit into critical size femoral segmental defects in rats. However, the slow degradation of PELA has prevented timely disappearance of the scaffold and ...


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu 2016 Chapman University

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review ...


Implantable Microenvironments To Capture Stable-To- Aggressive Tumor Transition, Ryan Carpenter, Jungwoo Lee 2016 University of Massachusetts Amherst

Implantable Microenvironments To Capture Stable-To- Aggressive Tumor Transition, Ryan Carpenter, Jungwoo Lee

UMass Center for Clinical and Translational Science Research Retreat

Clinical stability occurs when cancers reach a state where the disease neither advances nor regresses. Tumors can remain in this state for multiple years before progressing to more aggressive phenotypes. The mechanisms for maintaining a stable state and the factors that contribute to tumor activation are poorly understood. We hypothesized that an implantable biomaterial scaffold would be able to isolate a population of stable tumor cells that could then be used to study the transition to an aggressive phenotype. In this work we developed a tunable and highly controlled, porous acrylamide scaffold and subcutaneously implanted them in immunodeficient (NSG) mice ...


Lipoaspirate And Adipose Stem Cells As Potential Therapeutics For Chronic Scars, Dylan Perry, Jorge Lujan-Hernandez, Michael S. Chin, So-Yun Min, Ava Chappell, Raziel Rojas-Rodriguez, Raghu Appasani, Patrick Teebagy, Silvia Corvera, Janice F. Lalikos 2016 University of Massachusetts Medical School

Lipoaspirate And Adipose Stem Cells As Potential Therapeutics For Chronic Scars, Dylan Perry, Jorge Lujan-Hernandez, Michael S. Chin, So-Yun Min, Ava Chappell, Raziel Rojas-Rodriguez, Raghu Appasani, Patrick Teebagy, Silvia Corvera, Janice F. Lalikos

UMass Center for Clinical and Translational Science Research Retreat

Introduction: Burn injuries can lead to hypertrophic or keloid scars, causing pain and long lasting mobility issues. Current therapies are often unsatisfactory, costly, or morbid. Prior studies suggest adipose derived stem cells (ADSCs) and lipoaspirate can improve scar outcomes of acute thermal wounds. Clinical reports suggest lipoaspirate and ADSCs can improve chronic burn scar remodeling. However, this has not been extensively studied in animal models. We sought to determine if adipose tissue can improve chronic scar remodeling and to compare the effects of ADSCs and processed lipoaspirate.

Methods: 50 CD1 nu/nu athymic mice received a standardized deep partial-thickness thermal ...


Optimization Of The Design Of An Amphiphilic Biodegradable Polymer For Tissue-Engineering Application, Ben Zhang, Tera M. Filion, Jie Song 2016 University of Massachusetts Medical School

Optimization Of The Design Of An Amphiphilic Biodegradable Polymer For Tissue-Engineering Application, Ben Zhang, Tera M. Filion, Jie Song

UMass Center for Clinical and Translational Science Research Retreat

Biodegradable polymers have been widely utilized as drug delivery vehicles and tissue engineering scaffolds. We previously designed amphiphilic triblock copolymer poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PELA) and its hydroxyapatite (HA) composites for bone tissue engineering applications. The hydrophilic electrospun PELA-HA composite exhibited aqueous stability and elastic handling characteristics, and was able to template the proliferation and osteogenesis of bone marrow stromal cells (BMSCs) in vitro and in vivo when spiral-wrapped into cylinders and press-fit into critical size femoral segmental defects in rats. However, the slow degradation of PELA has prevented timely disappearance of the scaffold and ...


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez 2016 Augustana College, Rock Island Illinois

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 ...


Interaction Of Fibrinogen With Fibronectin: Purification And Characterization Of A Room Temperature-Stable Fibrinogen-Fibronectin Complex From Normal Human Plasma, Ayman E. Ismail 2016 University of Nebraska-Lincoln

Interaction Of Fibrinogen With Fibronectin: Purification And Characterization Of A Room Temperature-Stable Fibrinogen-Fibronectin Complex From Normal Human Plasma, Ayman E. Ismail

Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research

A fibrinogen-fibronectin complex (γγ’pdFI-pdFN) was purified from normal human plasma using a sequence of cryoprecipitation, ammonium sulfate fractionation, and DEAE Sepharose chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing condition showed both a 1:1 stoichiometric ratio of fibrinogen (FI) to fibronectin (FN) as well as a stoichiometric ratio of 1:1 of γg to gγ’. The γγ’pdFI-pdFN complex was non-covalent in nature as it was disrupted by affinity adsorption to Gelatin Sepharose where pdFN bound strongly and the disrupted γγ’pdFI fell through the chromatographic column. Surprisingly, the purified γγ’pdFI-pdFN complex was more broadly ...


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi 2016 University of Tennessee - Knoxville

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between ...


Exploring Biomarkers For Point Of Care Bladder Cancer Detection, Cassandra M. Walker 2016 University of Arkansas, Fayetteville

Exploring Biomarkers For Point Of Care Bladder Cancer Detection, Cassandra M. Walker

Biomedical Engineering Undergraduate Honors Theses

Bladder cancer is the 5th most common non-cutaneous human cancer in the United States. While effective methods of detecting bladder cancer are currently practiced, they are often expensive and invasive. There is a need for a noninvasive detection method that can be used in areas with few medical resources. Cell free DNA in urine is normally present only in very low concentrations. Abnormally high levels of cell free DNA in urine could be indicative of disease. This study tests the hypothesis that DNA present in urine can be used as a biomarker for bladder cancer before hematuria is seen in ...


Sustained Cell Differentiation Of 2d H9 Human Embryonic Stem Cells Into Mesenchymal Stem Cells, Hannah M. Christian 2016 University of Nebraska-Lincoln

Sustained Cell Differentiation Of 2d H9 Human Embryonic Stem Cells Into Mesenchymal Stem Cells, Hannah M. Christian

UCARE Research Products

This experiment consisted of the controlled differentiation of H9 embryonic stem cells to mesenchymal stem cells. Though this experiment was repeated twice and improvement was seen in these repetitions, the cells were only able to be partially differentiated. However, the morphology of the differentiated cells is similar to those of healthy adult mesenchymal stem cells.

The progression of the differentiation can be seen in the microscope slide photos below. Throughout the differentiation, there occurred a decrease in cell survival and reduction of cell growth, but an increase in mesenchymal stem cell morphology. Throughout the last week of the differentiation, very ...


Patterned Alginate Hydrogels To Induce Chondrocyte Alignment, Jordan Catherine Verplank, Taylor D. Laughlin, Angela K. Pannier 2016 University of Nebraska-Lincoln

Patterned Alginate Hydrogels To Induce Chondrocyte Alignment, Jordan Catherine Verplank, Taylor D. Laughlin, Angela K. Pannier

UCARE Research Products

The growth plate has an intricate architecture, and this architecture is necessary for directional growth of bones. Specifically, the cells align in longitudinal columns. As the growth plate expands with this pattern, the bone elongates with the same alignment pattern. The purpose of this research is to mimic this single celled, columnar alignment in vitro. In developing this alignment in vitro, this research will contribute to the overall study of growing growth for the development of improved therapeutic treatments and engineered tissues for transplants.


Pnipam Particles For Protein Delivery To Tumor-Associated Macrophages., Christopher Isely 2016 Iowa State University

Pnipam Particles For Protein Delivery To Tumor-Associated Macrophages., Christopher Isely

Honors Projects and Posters

Drug delivery vehicles are designed to address limitations associated with traditional drug administration methods. In the case of cancer immunotherapy, the problem often lies in toxicity of drug, local delivery and short residence time in the body. In cancer, macrophages are prime targets for immunotherapy. They exist on a spectrum of phenotypes, with M1 classically activated and M2 alternatively activated macrophages being the traditional ends of this spectrum. M2 macrophages are pro-wound healing, and M1 macrophages are pro-inflammatory. Tumor associated macrophages (TAM’s) are mostly M2-like macrophages and promote tumor growth. Interleukin 12 (IL-12) delivery to macrophages has been shown ...


Equilibrium Testing Of Rat Tail Tendon: An Analysis Of The Viscoelastic Properties Of Collagen Under Different Strain Points, Joshua C. Witt 2016 Rose-Hulman Institute of Technology

Equilibrium Testing Of Rat Tail Tendon: An Analysis Of The Viscoelastic Properties Of Collagen Under Different Strain Points, Joshua C. Witt

Graduate Theses - Biology & Biomedical Engineering

Instantaneous tensile testing and stress-relaxation testing are forms of mechanical testing used to determine the elastic and viscoelastic properties of biological tissue. Equilibrium testing is a form of testing that combines both of these testing approaches at different strain points to determine the elastic properties of a material and also assess their viscoelastic properties in the same test. This testing method is commonly used on highly viscoelastic materials such as cartilage but has never been fully described in dense collagenous materials such as tendon or ligament. This analysis utilizes different strain points selected to capture the classic non-linear behavior of ...


A Scalable Low-Cost Cgmp Process For Clinical Grade Production Of The Hiv Inhibitor 5p12-Rantes In Pichia Pastoris, Fabrice Cerini, Hubert Gaertner, Knut Madden, Ilya Tolstorukov, Scott Brown, Bram Laukens, Nico Callewaert, Jay C. Harner, Anna M. Oommen, John T. Harms, Anthony R. Sump, Robert C. Sealock, Dustin J. Peterson, Scott K. Johnson, Stephan B. Abramson, Michael M. Meagher, Robin Offord, Oliver Hartley 2016 University of Geneva, Geneva, Switzerland

A Scalable Low-Cost Cgmp Process For Clinical Grade Production Of The Hiv Inhibitor 5p12-Rantes In Pichia Pastoris, Fabrice Cerini, Hubert Gaertner, Knut Madden, Ilya Tolstorukov, Scott Brown, Bram Laukens, Nico Callewaert, Jay C. Harner, Anna M. Oommen, John T. Harms, Anthony R. Sump, Robert C. Sealock, Dustin J. Peterson, Scott K. Johnson, Stephan B. Abramson, Michael M. Meagher, Robin Offord, Oliver Hartley

Chemical and Biomolecular Engineering -- All Faculty Papers

In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal ...


Quantitative Comparison Of A Nanoengineered Alumina Coated Cnt Arrays To Sio2 Coated Cnts And Solution Based Delivery System, Shree Aier 2016 Portland State University

Quantitative Comparison Of A Nanoengineered Alumina Coated Cnt Arrays To Sio2 Coated Cnts And Solution Based Delivery System, Shree Aier

Undergraduate Research & Mentoring Program

To meet the growing need for nanoengineered biocompatible materials to serve as drug delivery platforms, in this research, carbon nanotube arrays were fabricated by chemical vapor deposition, followed by an alumina coating by the high yielding, tightly controlled atomic layer deposition. This nanoengineered vertically aligned alumina nanowire array serves as a platform for delivering antigens, which act as cancer adjuvants. The physicochemical characteristics of the nanowires (NWs) can significantly influence the delivery of a biomolecule to immune cells. To investigate the material characteristics, the delivery efficiency of the antigen using NWs was quantitatively assessed by flow cytometry. Further, the mechanism ...


Novel Small Airway Model Using Electrospun Decellularized Lung Extracellular Matrix, Bethany M. Young 2016 VCU

Novel Small Airway Model Using Electrospun Decellularized Lung Extracellular Matrix, Bethany M. Young

Theses and Dissertations

Chronic respiratory diseases affects many people worldwide with little known about the mechanisms diving the pathology, making it difficult to find a cure. Improving the understanding of smooth muscle and extracellular matrix (ECM) interaction is key to developing a remedy to this leading cause of death. With currently no relevant or controllable in vivo or in vitro model to investigate diseased and normal interactions of small airway components, the development of a physiologically relevant in vitro model with comparable cell attachment, signaling, and organization is necessary to develop new treatments for airway disease. The goal of this study is to ...


Fgf2-Induced Effects On Transcriptome Associated With Regeneration Competence In Adult Human Fibroblasts, Olga Kashpur, David Lapointe, Sakthikumar Ambady, Elizabeth Ryder, Tanja Dominko 2015 Worcester Polytechnic Institute

Fgf2-Induced Effects On Transcriptome Associated With Regeneration Competence In Adult Human Fibroblasts, Olga Kashpur, David Lapointe, Sakthikumar Ambady, Elizabeth Ryder, Tanja Dominko

Sakthikumar Ambady

BACKGROUND: Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS: We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules ...


Digital Commons powered by bepress