Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

591 Full-Text Articles 1,417 Authors 172,788 Downloads 68 Institutions

All Articles in Molecular, Cellular, and Tissue Engineering

Faceted Search

591 full-text articles. Page 1 of 27.

The Effects Of Mechanical Strain On Vascular Calcification And The Canonical Wnt Pathway, Hannah E. Douglas 2023 Mississippi State University

The Effects Of Mechanical Strain On Vascular Calcification And The Canonical Wnt Pathway, Hannah E. Douglas

Theses and Dissertations

Cardiovascular disease is a significant health crisis, representing 32% of deaths worldwide in 2019. Vascular calcification (VC), a major contributor to cardiovascular disease, is a regulated biomineralization process whose exact mechanisms are unknown. Additionally, vascular smooth muscle cells (VSMCs) significantly contribute to VC by undergoing a phenotypic switch and differentiating into osteoblast-like cells. When factors like hypertension cause disturbed laminar flow in the body’s vasculature, the mechanical stress promotes the phenotypic switch and calcification of VSMCs via mechanotransduction. VC is also induced by the Wnt pathway, which is activated via mineral imbalance and mechanical stimulation. However, the exact mechanisms behind …


In Vitro And In Vivo Diabetic Models For Assessment Of Tissue Engineered Vascular Grafts, Juan Carlos Carrillo Garcia 2023 Clemson University

In Vitro And In Vivo Diabetic Models For Assessment Of Tissue Engineered Vascular Grafts, Juan Carlos Carrillo Garcia

All Dissertations

Diabetes has become one of the leading causes of lower-limb loss worldwide. Every 30 seconds, a person loses a limb due to diabetic-related vascular complications. About one-third of patients needing lower-limb bypass surgery have debilitated autologous vessels unsuitable for use, and no other good long-term options are available. These detrimental effects on the vasculature are caused mainly by the hyperglycemic and hyperlipidemic conditions derived from diabetes. Under these conditions, an increase in advanced glycation end products (AGEs) and reactive oxygen species leads to irreversible crosslinks of extracellular matrix proteins, accelerating vascular pathology through vascular stiffening, endothelial dysfunction, inflammation, atherosclerosis, fibrosis, …


Investigating The Potential Of A Cell-Based Gene Editing Therapy For Inherited Metabolic Liver Disease, Ilayda Ates 2023 Clemson University

Investigating The Potential Of A Cell-Based Gene Editing Therapy For Inherited Metabolic Liver Disease, Ilayda Ates

All Dissertations

Inherited metabolic diseases (IMDs) affecting the liver are relatively rare but collectively have a prevalence of 1 in 800 live births. These diseases result from autosomal recessive single-gene mutations, leading to organ dysfunction and potentially fatal consequences if left untreated. One potential therapeutic strategy for IMDs of the liver involves using CRISPR-Cas9-induced loss of function mutations. However, translating this approach into the clinic is limited by the need for safe and effective CRISPR delivery methods. Adeno-associated viral vectors (AAVs), commonly used for CRISPR delivery, are associated with significant safety and efficacy concerns, including risks for immunogenicity, off-target mutagenesis, and genotoxicity …


Editorial: Intervertebral Disc Degeneration And Osteoarthritis: Mechanisms Of Disease And Functional Repair., Graciosa Q Teixeira, Jana Riegger, Raquel M Gonçalves, Makarand V. Risbud 2023 Thomas Jefferson University

Editorial: Intervertebral Disc Degeneration And Osteoarthritis: Mechanisms Of Disease And Functional Repair., Graciosa Q Teixeira, Jana Riegger, Raquel M Gonçalves, Makarand V. Risbud

Department of Orthopaedic Surgery Faculty Papers

No abstract provided.


Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov 2023 Old Dominion University

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber 2023 Washington University in St. Louis

Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber

McKelvey School of Engineering Theses & Dissertations

The lymphatic system is responsible for immune circulation and fluid balance in the body. It accomplishes this by draining interstitial fluid from local tissue and transferring it to lymph nodes and back into blood circulation. However, this process is implicated in many pathologies, one of the most dangerous being breast cancer metastasis to the lymph nodes. The largest factor in breast cancer patient mortality is metastasis. Lymphangiogenesis, the growth of new lymphatic vessels, has been thought to play a dynamic role in aiding breast cancer metastasis. Breast cancer tumor cells have been shown to remodel the functionality of local lymph …


Methodology For Formalin Fixed Paraffin Embedded Cardiac Tissue Analysis, Leah G. Gutzwiller, Colleen Crouch 2023 University of Tennessee Knoxville

Methodology For Formalin Fixed Paraffin Embedded Cardiac Tissue Analysis, Leah G. Gutzwiller, Colleen Crouch

Haslam Scholars Projects

No abstract provided.


Modeling Epithelial-Mesenchymal Transition In A 3d Multicellular Model Of Tgf-Β1 Signaling, Kristin Kim, Chris Lemmon 2023 Virginia Commonwealth University

Modeling Epithelial-Mesenchymal Transition In A 3d Multicellular Model Of Tgf-Β1 Signaling, Kristin Kim, Chris Lemmon

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo 2023 Claremont Colleges

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo

KGI Theses and Dissertations

Nucleic acid amplification tests (NAATs) are among the diagnostic tests with the highest sensitivity and specificity. However, they are more complex to develop than other diagnostic tests such as biochemical tests and lateral flow immunoassay tests. Polymerase chain reaction (PCR) is the gold standard for NAATs. PCR requires thermal cycling to achieve clonal amplification of the target pathogen DNA for diagnosis. Thermal cycling poses a challenge in the development of PCR diagnostics for point-of-care (POC) settings. Loop-mediated isothermal amplification (LAMP) offers an isothermal method for NAATs diagnostics. The advancement of the microfluidics field significantly enhances the development of LAMP diagnostics …


Understanding Vascular Calcification Through The Lens Of Canonical Wnt Signaling, KarLee McNeel 2023 Mississippi State University

Understanding Vascular Calcification Through The Lens Of Canonical Wnt Signaling, Karlee Mcneel

Theses and Dissertations

Every 37 seconds, someone in the United States dies from cardiovascular disease. Vascular calcification is one of the underlying causes of these fatal events. Medial calcification develops following arteriosclerosis, or hardening of the arteries. Medial calcification is characterized by the deposition of hydroxyapatite in the medial layer of the arteries after normal vascular smooth muscle cells undergo a phenotypic switch to resemble osteoblast-like cells. It is hypothesized that this switch is caused by the wingless related (WNT)-Signaling pathway. The WNT-Signaling pathway, upon activation, causes the upregulation of osteogenic markers for the development of osteoblast-like cells. Current treatments alleviate consequences of …


A Comparison Of Optical Measurement Methods For The Growth Of S. Cerevisiae, Jackson Black 2023 University of Arkansas, Fayetteville

A Comparison Of Optical Measurement Methods For The Growth Of S. Cerevisiae, Jackson Black

Chemical Engineering Undergraduate Honors Theses

Genetic engineering of living organisms provides the opportunity to express and harvest different proteins from cell surfaces. Yeast (S. cerevisiae) is one such organism and is capable of being grown on an industrial scale. Cellular concentration is an important parameter to monitor while fermentation processes are underway, in order to control the environment inside the growth medium and maximize yields. Spectrophotometry is a conventional method for measuring concentration, but is limited by a narrow absorbance range, and the need for on-site periodic sampling. A continuous method of measurement, as provided by Bug Labs BE2100 non-invasive biomass monitor, would …


Assesment Of Structure, Function, And Microevolutionary Dynamics Of Extrachromosomal Circular Dna In Chinese Hamster Ovary Cells, Dylan Chitwood 2023 Clemson University

Assesment Of Structure, Function, And Microevolutionary Dynamics Of Extrachromosomal Circular Dna In Chinese Hamster Ovary Cells, Dylan Chitwood

All Dissertations

Chinese hamster ovary (CHO) cell lines are among the most popular expression hosts used in biopharmaceutical manufacturing due to relative ease of culture, capacity to perform human-like post-translational modifications, and non-susceptibility to viruses. However, the intrinsic plasticity of the CHO genome can lead to undesired genetic rearrangements, phenotypic shifts, reduced product quality, and early culture termination that prevents continuous biomanufacturing. A characteristic of plastic and unstable genomes that is poorly understood in CHO cells is extrachromosomal circular DNA (eccDNA). EccDNAs are focal amplifications of the genome that reside in the extranuclear space. These plasmid-like entities are structurally complex and are …


Study Of The Stability Of Heparin/Collagen Layer-By-Layer Coatings, Hector M. Apodaca Reyes 2023 University of Arkansas, Fayetteville

Study Of The Stability Of Heparin/Collagen Layer-By-Layer Coatings, Hector M. Apodaca Reyes

Chemical Engineering Undergraduate Honors Theses

Pairing heparin with collagen-based medical implants has opened a whole new area of research for enhancing the desired effect of current implants. In fact, heparin (HEP) and collagen (COL) layer-by-layer (LbL) coatings have shown impressive results in forming polyelectrolyte multilayers. It has been already seen on skin grafts, nerve guide conduits (NGCs), and drug delivery devices yielding promising results. Due to being a simple, cost-efficient, and versatile option to fabricate thin biomimetic films, this self-assembly technique is one of the most effective methods to immobilize extracellular matrix (collagen and heparin) onto medical devices and implants. Even though previous studies have …


Preparing Homogenous Composites Of Collagen And Cellulose Nanocrystals For Tissue Engineering Research, Zachary Stanley 2023 University of Arkansas, Fayetteville

Preparing Homogenous Composites Of Collagen And Cellulose Nanocrystals For Tissue Engineering Research, Zachary Stanley

Biological and Agricultural Engineering Undergraduate Honors Theses

Advancements in medicine and our understanding of stem cells have led to a greater emphasis on further developing research focused on tissue engineering. This research has led to the rise of both two-dimensional and three-dimensional scaffolds that can be utilized to repair bone, skin, vascular, and potentially even nervous tissue. One of the prominent compounds used in modern scaffolds is collagen-based hydrogels due to their low antigenicity and ability to provide structure to cells. There is potential to further improve upon this three-dimensional scaffold by incorporating cellulose nanocrystals (CNCs) into a composite hydrogel with collagen. The addition would increase the …


Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas C. Allen 2023 University of Louisville

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas C. Allen

Electronic Theses and Dissertations

Glioblastoma (GBM) brain tumors are highly aggressive gliomas due to genetic and cellular heterogeneity. Current GBM treatment consists of surgical resection of the tumor combined with radio- or chemo-therapies. While these treatments have increased the life expectancy for GBM patients up to 20 months, they have had little effect on the 5-year survival rate. The complex cellular and genetic composition of the tumor makes current treatments less effective long term. One approach to developing more effective GBM treatments is to customize nanoparticle-based drug delivery systems that can directly target the aberrant gene expression patterns within a particular GBM tumor. Delivery …


Effects Of Post-Translational Histone Modifications On Transcription Rate, Aaron Bohn 2023 Roseman University of Health Sciences

Effects Of Post-Translational Histone Modifications On Transcription Rate, Aaron Bohn

Annual Research Symposium

No abstract provided.


3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark McHargue 2023 University of Kentucky

3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue

Theses and Dissertations--Biomedical Engineering

Currently, there is no standard in vitro model for studying the effects of mechanical stimulation on muscle in type II diabetes. Existing models primarily utilize electrical stimulation, which does not fully recapitulate the effects of exercise. In this thesis, we create a standardized in vitro model of murine muscle that can recapitulate the benefits seen in exercise when mechanically stimulated. Moreover, we show that a type II diabetes environment has similar effects on the muscle in vitro as well as in vivo.


A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyang Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth McMillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu 2023 Old Dominion University

A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyang Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu

Computer Science Faculty Publications

Background

Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis.

Methods

Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate …


Expression Optimization Of The Gst-Gfp Fusion Protein Through The Alteration Of Induction Conditions, Matthew J. Vaccaro 2023 University of Central Florida

Expression Optimization Of The Gst-Gfp Fusion Protein Through The Alteration Of Induction Conditions, Matthew J. Vaccaro

Honors Undergraduate Theses

This research sought to determine which induction condition resulted in the greatest GST-GFP fusion protein expression. It will hopefully serve as a guide for future researchers trying to produce their own recombinant protein containing GST and GFP-tags. The CDNB Enzyme Assay was used to determine the quantity of GST-GFP fusion protein present and tested three variables: IPTG concentration, duration, and temperature of induction. The findings showed that IPTG concentration, temperature, and induction duration all had a significant impact on protein expression. Induction temperatures of 20 °C and 25 °C showed better protein expression at IPTG concentrations of 1.0 mM IPTG …


The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling 2023 Virginia Commonwealth University

The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling

Theses and Dissertations

Treatments for acute respiratory distress syndrome (ARDS) are still unavailable and the prevalence of the disease has only increased due to the Covid-19 pandemic. Mechanical ventilation regiments are still utilized to support declining lung function, but they also contribute to lung damage and increase the risk of bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSC secretome and the extracellular matrix (ECM) into a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta-potential, and mass spectrometry …


Digital Commons powered by bepress