Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

397 Full-Text Articles 967 Authors 73,026 Downloads 51 Institutions

All Articles in Molecular, Cellular, and Tissue Engineering

Faceted Search

397 full-text articles. Page 1 of 17.

Development Of Gelatin And Graphene-Based Nerve Regeneration Conduits Using 3d Printing Strategies For Electrical Transdifferentiation Of Mesenchymal Stem Cells, Metin Uz, Maxsam Donta, Meryem Mededovic, Donald S. Sakaguchi, Surya Mallapragada 2019 Iowa State University

Development Of Gelatin And Graphene-Based Nerve Regeneration Conduits Using 3d Printing Strategies For Electrical Transdifferentiation Of Mesenchymal Stem Cells, Metin Uz, Maxsam Donta, Meryem Mededovic, Donald S. Sakaguchi, Surya Mallapragada

Chemical and Biological Engineering Publications

In this study, gelatin and graphene-based nerve regeneration conduits/scaffolds possessing tailored 3D microstructures and mechanical properties were fabricated using 3D printing. The effect of 3D conduit microstructure and mechanical properties along with the applied electrical stimuli on mesenchymal stem cell (MSCs) behavior and transdifferentiation into Schwann cell (SC)-like phenotypes were investigated. The results indicated that the gelatin conduits/scaffolds had favorable 3D microstructural and mechanical properties for MSC attachment and growth. Immunocytochemistry results demonstrated that the application of electrical stimuli through the conductive graphene within the gelatin-based 3D microstructure had a profound effect on the differentiation of MSCs ...


Disciplinary Learning From An Authentic Engineering Context, Catherine Langman, Judith Zawojewski, Patricia McNicholas, Ali Cinar, Eric Brey, Mustafa Bilgic, Hamidreza Mehdizadeh 2019 Illinois Institute of Technology

Disciplinary Learning From An Authentic Engineering Context, Catherine Langman, Judith Zawojewski, Patricia Mcnicholas, Ali Cinar, Eric Brey, Mustafa Bilgic, Hamidreza Mehdizadeh

Journal of Pre-College Engineering Education Research (J-PEER)

This small-scale design study describes disciplinary learning in mathematical modeling and science from an authentic engineeringthemed module. Current research in tissue engineering served as source material for the module, including science content for readings and a mathematical modeling activity in which students work in small teams to design a model in response to a problem from a client. The design of the module was guided by well-established principles of model-eliciting activities (a special class of problem-solving activities deeply studied in mathematics education) and recently published implementation design principles, which emphasize the portability of model-eliciting activities to many classroom settings.

Two ...


Targeted Delivery Of Bioactive Molecules For Vascular Intervention And Tissue Engineering, Hannah A. Strobel, Elisabet I. Qendro, Eben Alsberg, Marsha W. Rolle 2018 Worcester Polytechnic Institute

Targeted Delivery Of Bioactive Molecules For Vascular Intervention And Tissue Engineering, Hannah A. Strobel, Elisabet I. Qendro, Eben Alsberg, Marsha W. Rolle

Open Access Articles

Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents ...


An Engineer’S Take On The Bone-Ligament Interface: Utilizing Novel Technology To Improve Clinical Outcomes, Emma Garcia 2018 University of New Mexico - Main Campus

An Engineer’S Take On The Bone-Ligament Interface: Utilizing Novel Technology To Improve Clinical Outcomes, Emma Garcia

Shared Knowledge Conference

Ligament repair is a common surgical practice with a significant lack of viable replacements. The current gold standard for repair is the use of tendon grafts from cadavers or from another place in the patient’s body; however, these often cause more problems than they solve including immune responses or a lack of mobility in another place in the body. Synthetic replacements are of growing interest, though the ability to mimic the complex structure of the ligament and how it connects to the bone remains an obstacle. Our lab built a 3D bioprinter combined with an electrospinner to address this ...


6 - Evaluating The Effects Of Microenvironment Pro-Inflammatory Cytokines On Breast Cancer Metastasis, Megan Williams 2018 University of Georgia

6 - Evaluating The Effects Of Microenvironment Pro-Inflammatory Cytokines On Breast Cancer Metastasis, Megan Williams

Georgia Undergraduate Research Conference (GURC)

Breast cancer is one of the most commonly diagnosed forms of cancer in women, yet there is still no cure for stage IV breast cancer. Stage IV breast cancer is characterized by the cancer becoming metastatic and spreading to other parts of the body. With metastatic breast cancer accounting for approximately 90% of all breast cancer deaths, it is imperative to better understand the mechanisms of breast cancer metastasis for approaches towards treatment and prevention. It is understood that the cellular microenvironment plays a vital role in breast cancer metastasis, as research has shown that signaling molecules, such as cytokines ...


Development Of Granulation Tissue Mimetic Scaffolds For Skin Healing, Adam Hopfgartner 2018 The University of Western Ontario

Development Of Granulation Tissue Mimetic Scaffolds For Skin Healing, Adam Hopfgartner

Electronic Thesis and Dissertation Repository

Impaired skin healing is a significant and growing clinical concern, particularly in relation to diabetes, venous insufficiency and immobility. Previously, we developed electrospun scaffolds for the delivery of periostin (POSTN) and connective tissue growth factor 2 (CCN2), matricellular proteins involved in the proliferative phase of healing. This study aimed to design and validate a novel electrosprayed coaxial microsphere for the encapsulation of fibroblast growth factor 9 (FGF9), as a component of the POSTN/CCN2 scaffold, to promote angiogenic stability during wound healing. For the first time, we observed a pro-proliferative effect of FGF9 on human dermal fibroblasts (HDF) in vitro ...


Consistent And Reproducible Cultures Of Large-Scale 3d Mammary Epithelial Structures Using An Accessible Bioprinting Platform, John A. Reid, Peter M. Mollica, Robert D. Bruno, Patrick C. Sachs 2018 Old Dominion University

Consistent And Reproducible Cultures Of Large-Scale 3d Mammary Epithelial Structures Using An Accessible Bioprinting Platform, John A. Reid, Peter M. Mollica, Robert D. Bruno, Patrick C. Sachs

Medical Diagnostics & Translational Sciences Faculty Publications

Background: Standard three-dimensional (3D) in vitro culture techniques, such as those used for mammary epithelial cells, rely on random distribution of cells within hydrogels. Although these systems offer advantages over traditional 2D models, limitations persist owing to the lack of control over cellular placement within the hydrogel. This results in experimental inconsistencies and random organoid morphology. Robust, high-throughput experimentation requires greater standardization of 3D epithelial culture techniques.

Methods: Here, we detail the use of a 3D bioprinting platform as an investigative tool to control the 3D formation of organoids through the "self-assembly" of human mammary epithelial cells. Experimental bioprinting procedures ...


In Vitro Growth Of Osteoblasts On Poly Lactic-Co-Glycolic Acid Scaffolds Created Via Gas Foaming, Matthew James Thomas 2018 California Polytechnic State University, San Luis Obispo

In Vitro Growth Of Osteoblasts On Poly Lactic-Co-Glycolic Acid Scaffolds Created Via Gas Foaming, Matthew James Thomas

Master's Theses and Project Reports

This study analyzed the feasibility of using gas foaming to create Poly Lactic-co-Glycolic Acid (PLGA) scaffolds for use as a substrate in bone tissue engineering and set out to determine whether the presence of osteoblasts on these scaffolds enhanced their material stiffness. The process of bone formation involves osteoblasts depositing extracellular matrix and calcifying this matrix with calcium phosphate crystals (Hasegawa et al., 2017) and pits between 30-40μm in diameter on tissue engineering scaffold surfaces have been shown to best promote osteogenic activity in the presence of bone-forming cells (Halai et al., 2014).The scaffolds were determined to contain pits ...


Modulating Viscoelasticity, Stiffness, And Degradation Of Synthetic Cellular Niches Via Stoichiometric Tuning Of Covalent Versus Dynamic Noncovalent Cross-Linking, Yu Tan, Henry Huang, David C. Ayers, Jie Song 2018 University of Massachusetts Medical School

Modulating Viscoelasticity, Stiffness, And Degradation Of Synthetic Cellular Niches Via Stoichiometric Tuning Of Covalent Versus Dynamic Noncovalent Cross-Linking, Yu Tan, Henry Huang, David C. Ayers, Jie Song

Open Access Articles

Viscoelasticity, stiffness, and degradation of tissue matrices regulate cell behavior, yet predictive synergistic tuning of these properties in synthetic cellular niches remains elusive. We hypothesize that reversible physical cross-linking can be quantitatively introduced to synthetic hydrogels to accelerate stress relaxation and enhance network stiffness, while strategic placement of isolated labile linkages near cross-linking sites can predict hydrogel degradation, both of which are essential for creating adaptive cellular niches. To test these hypotheses, chondrocytes were encapsulated in hydrogels formed by biorthogonal covalent and noncovalent physical cross-linking of a pair of hydrophilic building blocks. The stiffer and more viscoelastic hydrogels with DBCO-DBCO ...


Fabrication And Evaluation Of Poly(Lactic Acid), Chitosan, And Tricalcium Phosphate Biocomposites For Guided Bone Regeneration, Srikanthan Ramesh, Lisa Lungaro, Dimitrios Tsikritsis, Eric Weflen, Iris V. Rivero 2018 Iowa State University

Fabrication And Evaluation Of Poly(Lactic Acid), Chitosan, And Tricalcium Phosphate Biocomposites For Guided Bone Regeneration, Srikanthan Ramesh, Lisa Lungaro, Dimitrios Tsikritsis, Eric Weflen, Iris V. Rivero

Industrial and Manufacturing Systems Engineering Publications

This study presents and evaluates an approach for fabricating poly(lactic acid) (PLA)/chitosan (CS)/tricalcium phosphate (TCP) electrospun scaffolds for guided bone regeneration, a dental procedure that uses membranes to direct and delineate regions of osteogenesis. Biomaterials were pre‐processed using cryomilling, a solid‐state grinding technique that facilitates the generation of powdered biocomposites conducive to electrospinning. X‐ray diffraction (XRD) confirmed the generation of cryomilled blends consisting of PLA, CS, and TCP. Results from the differential scanning calorimetry showed an upward shift in glass transition temperature and an increase in crystallinity with the inclusion of TCP reinforcing the ...


Tissue Clearing As A Mechanism To Identify Changes In Fibronectin Structure During Breast Cancer Metastasis, Maryam Nuru, Kelsey Hopkins, Luis Solorio 2018 Purdue University

Tissue Clearing As A Mechanism To Identify Changes In Fibronectin Structure During Breast Cancer Metastasis, Maryam Nuru, Kelsey Hopkins, Luis Solorio

The Summer Undergraduate Research Fellowship (SURF) Symposium

With metastasis accounting for approximately 90% of breast cancer deaths and an alarming number of over 300,000 new breast cancer cases to be diagnosed by the end of 2018, there is growing need to understand the process of breast cancer. Changes in the extracellular matrix (ECM) of the tumor microenvironment play an essential role in this deadly tumor progression. Specifically, the glycoprotein fibronectin (FN), has been identified to be up-regulated in patients with worse clinical outcomes. During tumor progression fibronectin undergoes conformational changes that aid in metastatic dissemination. In order to analyze the dynamic changes in FN expression and ...


Characterization And Quantification Of Fibrin Gel Mechanics With Fibroblast Invasion, Nicklaus Iavagnilio, Sarah Calve, Adrian Buganza-Tepole 2018 Purdue University

Characterization And Quantification Of Fibrin Gel Mechanics With Fibroblast Invasion, Nicklaus Iavagnilio, Sarah Calve, Adrian Buganza-Tepole

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cutaneous wounds undergo an intricate healing process stimulated by a variety of local mechanical and biological stimuli that lead to patterns of growth and remodeling. Despite significant research in dermal wound healing, pathological scarring is still common particularly in wounds closed under mechanical stress, or large wounds left to heal by secondary intention. The purpose of this study is to utilize previously established wound healing models using fibrin gels and fibroblasts to better understand the functional relationships of the biological processes of normal compared to abnormal wound healing. Increases in uni-axial strain and transforming growth factor beta-1 concentration have been ...


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora 2018 University of New Mexico - Main Campus

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation ...


Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen 2018 University of Nebraska-Lincoln

Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen

Chemical and Biomolecular Engineering -- All Faculty Papers

In this study, heparin-loaded poly-ε-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was ...


Developmental Steps For A Functional Three-Dimensional Cell Culture System For The Study Of Asymmetrical Division Of Neural Stem Cells, Martina Zamponi 2018 Old Dominion University

Developmental Steps For A Functional Three-Dimensional Cell Culture System For The Study Of Asymmetrical Division Of Neural Stem Cells, Martina Zamponi

Biomedical Engineering Theses & Dissertations

Stem cells are a cell type present during and following development, which possess self- renewal properties, as well as the ability to differentiate into specific cells. Asymmetrical division is the cellular process that allows stem cells to produce one differentiated and one un-differentiated daughter cell during the same mitotic event. Insights in the molecular mechanisms of such process are minimal, due to the absence of effective methods for its targeted study. Currently, traditional methods of investigation include monolayer cell culture and animal models. The first poses structural limitations to the accurate representation of human tissue and cell structures, while animal ...


Chemically Modified Gellan Gum Hydrogels With Tunable Properties For Use As Tissue Engineering Scaffolds, Zihao Xu, Zhuqing Li, Shan Jiang, Kaitlin M. Bratlie 2018 Iowa State University

Chemically Modified Gellan Gum Hydrogels With Tunable Properties For Use As Tissue Engineering Scaffolds, Zihao Xu, Zhuqing Li, Shan Jiang, Kaitlin M. Bratlie

Chemical and Biological Engineering Publications

Gellan gum is a naturally occurring polymer that can cross-link in the presence of divalent cations to form biocompatible hydrogels. However, physically cross-linked gellan gum hydrogels lose their stability under physiological conditions, thus restricting the applications of these hydrogels in vivo. To improve the mechanical strength of the gels, we incorporated methacrylate into the gellan gum and chemically cross-linked the hydrogel through three polymerization methods: step growth through thiol–ene photoclick chemistry, chain-growth via photopolymerization, and mixed model in which both mechanisms were employed. Methacrylation was confirmed and quantified by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared ...


Modeling Pharmaceutical Inhibition Of Glucose-Stimulated Renin-Angiotensin System In Kidneys, Ashlee N. Ford Versypt, Minu R. Pilvankar, Hui Ling Yong 2018 Oklahoma State University - Main Campus

Modeling Pharmaceutical Inhibition Of Glucose-Stimulated Renin-Angiotensin System In Kidneys, Ashlee N. Ford Versypt, Minu R. Pilvankar, Hui Ling Yong

Biology and Medicine Through Mathematics Conference

No abstract provided.


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman 2018 Southern Methodist University

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex ...


Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs 2018 University of New Mexico

Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs

Biomedical Sciences ETDs

Aortic valve disease (AVD) is a large contributor to health costs in the United States affecting 2.8% of the population greater than 75 years old. With a growing elderly population due to medical advances, AVD will continue to rise in prevalence over time. Current treatments for AVD are insufficient due to a lack of preventative therapies and the bioprosthetic valves used for surgical replacement have major limitations. Tissue engineered heart valves (TEHVs) present an ideal solution to current AVD needs because of their biocompatibility, capability to integrate with the host’s tissue, and ability to utilize the natural repair ...


Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun 2018 University of Arkansas, Fayetteville

Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun

Theses and Dissertations

Natural and synthetic polymers and biopolymers have been studied for a variety of applications in food emulsion, biopharmaceutical purification, tissue engineering, and biosensor. The structure and property of polymers and biopolymers are critically important to determine their functions. Molecular dynamics (MD) simulations have a unique advantage to explore the structure and property of polymers and biopolymers from the molecular level. In the dissertation, MD simulations were conducted to study the mechanisms of various biological and chemical processes controlled by polymers and biopolymers based on real-world experimental results.

Seven heptapeptides have been screened from a peptide library in our earlier study ...


Digital Commons powered by bepress