Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

456 Full-Text Articles 1,124 Authors 87,443 Downloads 57 Institutions

All Articles in Molecular, Cellular, and Tissue Engineering

Faceted Search

456 full-text articles. Page 1 of 20.

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily 2020 Washington University in St. Louis

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily

Engineering and Applied Science Theses & Dissertations

Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts.

In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on ...


Design Of A 3d Printed Bioreactor For Bone Cancer Research, Brooklyn K. VanDerWolde, Katelyn Hillson 2020 South Dakota State University

Design Of A 3d Printed Bioreactor For Bone Cancer Research, Brooklyn K. Vanderwolde, Katelyn Hillson

The Journal of Undergraduate Research

Bone cancer is an aggressive disease and has peak occurrence during physiological stimulation of growth and aging. Astronauts who undergo long-term space missions also acquire an increased risk of bone tissue degeneration and cancer. Few in-vitro models currently exist capable of reproducing the complex microenvironment of bone tissue to support multicellular activity in a three-dimensional structure. This limits the ability to understand disease progression and develop suitable treatment strategies. Therefore, developing a bone tissue model and an associated bioreactor is critical to understand the risks associated with cancer progression and improve treatment and preventions related to those risks. The goal ...


Transcriptomic Analysis Of Cytokine-Treated Tissue-Engineered Cartilage As An In Vitro Model Of Osteoarthritis, Jiehan Li 2020 Washington University in St. Louis

Transcriptomic Analysis Of Cytokine-Treated Tissue-Engineered Cartilage As An In Vitro Model Of Osteoarthritis, Jiehan Li

Engineering and Applied Science Theses & Dissertations

Osteoarthritis (OA), as the most common form of arthritis and a leading cause of disability worldwide, currently has no disease-modifying drugs. Inflammation plays an important role in cartilage degeneration in OA, and pro-inflammatory cytokines, IL-1β and TNF-α, have been shown to induce degradative changes along with aberrant gene expression in chondrocytes, the only resident cells in cartilage. The goal of this study was to further understand the transcriptomic regulation of tissue-engineered cartilage in response to inflammatory cytokines using an in vitro miPSC model system. We performed RNA sequencing for the IL-1β or TNF-α treated tissue-engineered cartilage derived from murine iPSCs ...


Toward Controlling Cardiac Tissue Pacing Using Modified Mrna, Yicheng Zhao 2020 Washington University in St. Louis

Toward Controlling Cardiac Tissue Pacing Using Modified Mrna, Yicheng Zhao

Engineering and Applied Science Theses & Dissertations

Arrhythmia is a common heart disease that happens when the heart is beating too fast, too slow, or irregularly. To study the mechanisms and treatments of this disease, it is important to acutely control the beating rate of the model as it will help distinguish the contribution of different potassium currents and drug-induced action potential in cardiomyocytes. The current method of tissue pacing, electrical pacing, causes contamination and corrosive damage to tissues, thus the tissues fail to be used repeatedly or in future studies. In this study, red-shifted channelrhodopsin (ReaChR) is applied as a non-chemical means to control the beating ...


Design Of An Affordable Rotating Drum Electrospinner For Classroom Education, Peder Solberg 2020 South Dakota State University

Design Of An Affordable Rotating Drum Electrospinner For Classroom Education, Peder Solberg

The Journal of Undergraduate Research

Electrospinning is a technology used to generate small fibers down to nano-scale size. This method of fiber creation has been around for many years. However, in recent years electrospinning has found increased applications, especially in the area of tissue engineering due to its ability to create fibers with properties similar to the extracellular matrix in tissue. An electrospinning platform can illustrate concepts of engineering, electro-mechanical system design, manufacturing, and biomedical applications in one single package. Hence, it provides an excellent opportunity to integrate into secondary (middle and high school) and post-secondary (undergraduate) technology education.

Furthermore, just as integration of 3D ...


Brassinosteroids Inhibit Autotropic Root Straightening By Modifying Filamentous-Actin Organization And Dynamics, Louise de Bang, Ana Paez-Garcia, Ashley E. Cannon, Sabrina Chin, Jaydeep Kolape, Fuqi Liao, J. Alan Sparks, Qingzhen Jiang, Elison B. Blancaflor 2020 University of Copenhagen

Brassinosteroids Inhibit Autotropic Root Straightening By Modifying Filamentous-Actin Organization And Dynamics, Louise De Bang, Ana Paez-Garcia, Ashley E. Cannon, Sabrina Chin, Jaydeep Kolape, Fuqi Liao, J. Alan Sparks, Qingzhen Jiang, Elison B. Blancaflor

Papers from the Nebraska Center for Biotechnology

When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls when vertical ...


Synthesis And Applications Of Theranostic Oligonucleotides Carrying Multiple Fluorine Atoms, Valeriy G. Metelev, Alexei A. Bogdanov 2020 University of Massachusetts Medical School

Synthesis And Applications Of Theranostic Oligonucleotides Carrying Multiple Fluorine Atoms, Valeriy G. Metelev, Alexei A. Bogdanov

Open Access Articles

The use of various oligonucleotide (ON) syntheses and post-synthetic strategies for targeted chemical modification enables improving their efficacy as potent modulators of gene expression levels in eukaryotic cells. However, the search still continues for new approaches designed for increasing internalization, lysosomal escape, and tissue specific delivery of ON. In this review we emphasized all aspects related to the synthesis and properties of ON derivatives carrying multifluorinated (MF) groups. These MF groups have unique physico-chemical properties because of their simultaneous hydrophobicity and lipophobicity. Such unusual combination of properties results in the overall modification of ON mode of interaction with the cells ...


All-Wheel-Ukraine, Sofiya Rakovska, Hannah McCulloch, Andrey Garasimchuk, Ahmad Alsaihati 2020 The University of Akron

All-Wheel-Ukraine, Sofiya Rakovska, Hannah Mcculloch, Andrey Garasimchuk, Ahmad Alsaihati

Williams Honors College, Honors Research Projects

We are working with a non-profit organization in Ukraine that provides wheelchairs/strollers to families of disables children who cannot afford them. Their current preferred solution is a baby stroller. The organization asked us to create a wheelchair that is cost efficient, light and collapsible to be used for children ages up to thirteen years old. We will be creating an alpha prototype wheelchair by modifying a basic wheelchair that we purchased. This modifications include adding a headrest that is adjustable and provides a sufficient support for children within the age group given to us and diverse levels of disabilities ...


Assessing 3d Printability Of Bioinks, Nicole Ramirez 2020 University of Central Florida

Assessing 3d Printability Of Bioinks, Nicole Ramirez

Honors Undergraduate Theses

The field of tissue engineering (TE) is continuously improving through the use of additive manufacturing techniques (AM) such as three-dimensional (3D) bioprinting. The 3D bioprinter has significantly gained attention in the TE field because it is more efficient than regenerative medicine and is readily available as opposed to organ transplants. Working like a conventional 3D printer, the 3D bioprinter is able to dispense material layer by layer from the bottom up with the printing head able to move in the X, Y, and Z direction. This movement allows for the fabrication of structures with complex geometries. In this study, the ...


From Soap Bubbles To Cell Membranes, Peter Beltramo 2020 University of Massachusetts Amherst

From Soap Bubbles To Cell Membranes, Peter Beltramo

Science and Engineering Saturday Seminars

Have you ever blown a soap bubble and wondered - what causes the bubble to be so stable and produces those colorful reflections of light? The answer lies in a class of molecules known as surfactants, and they have remarkable similarities with the molecules that comprise the cell membrane of all living organisms. In this workshop, we will use the analogy of a soap bubble to describe cellular membrane properties such as chemistry, structure, membrane transport, and ion channel formation. The goals of this workshop are to 1) link initially intractable concepts in biology like intracellular transport to the intuitive soap ...


Bubble Lab Exercise, Peter Beltramo 2020 University of Massachusetts Amherst

Bubble Lab Exercise, Peter Beltramo

Science and Engineering Saturday Seminars

The cell membrane is a ubiquitous component in mammalian cells which control many vital biological functions. It consists of a phospholipid bilayer with embedded protein molecules which serve to transport molecules between the interior and exterior of the cell. Understanding what makes cell membranes so important and how they function requires concepts from physics, chemistry, and of course biology, but it is difficult to learn and conceptualize the structure and function of membranes due to their nanoscopic size and dynamic nature which can’t be properly appreciated in a static textbook. This activity draws analogies between the chemistry and structure ...


Micrococcal-Nuclease-Triggered On-Demand Release Of Vancomycin From Intramedullary Implant Coating Eradicates Staphylococcus Aureus Infection In Mouse Femoral Canals, Ananta Ghimire, Jordan D. Skelly, Jie Song 2019 University of Massachusetts Medical School

Micrococcal-Nuclease-Triggered On-Demand Release Of Vancomycin From Intramedullary Implant Coating Eradicates Staphylococcus Aureus Infection In Mouse Femoral Canals, Ananta Ghimire, Jordan D. Skelly, Jie Song

Orthopedics and Physical Rehabilitation Publications

Preventing orthopedic implant-associated bacterial infections remains a critical challenge. Current practices of physically blending high-dose antibiotics with bone cements is known for cytotoxicity while covalently tethering antibiotics to implant surfaces is ineffective in eradicating bacteria from the periprosthetic tissue environment due to the short-range bactericidal actions, which are limited to the implant surface. Here, we covalently functionalize poly(ethylene glycol) dimethacrylate hydrogel coatings with vancomycin via an oligonucleotide linker sensitive to Staphylococcus aureus (S. aureus) micrococcal nuclease (MN) (PEGDMA-Oligo-Vanco). This design enables the timely release of vancomycin in the presence of S. aureus to kill the bacteria both on the ...


The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun 2019 The University of Western Ontario

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology ...


Selection Of An Efficient Aav Vector For Robust Cns Transgene Expression, Killian S. Hanlon, Miguel Sena-Esteves, Eloise Hudry, Casey A. Maguire 2019 Harvard Medical School

Selection Of An Efficient Aav Vector For Robust Cns Transgene Expression, Killian S. Hanlon, Miguel Sena-Esteves, Eloise Hudry, Casey A. Maguire

Open Access Articles

Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent ...


In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill 2019 University of Arkansas, Fayetteville

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from ...


#5 - Identifying Cellular Mechano-Biological Responses To Peg-Based Hydrogels, Ian Smith, Karen E. Martin, Hannah S. Theriault 2019 Georgia Institute of Technology

#5 - Identifying Cellular Mechano-Biological Responses To Peg-Based Hydrogels, Ian Smith, Karen E. Martin, Hannah S. Theriault

Georgia Undergraduate Research Conference (GURC)

Cells sense and respond to mechanical stimuli from their external environment through a process called mechanotransduction. Focal adhesions are integrin-containing, multiprotein structures through which mechanical force is transmitted between the extracellular matrix and the interacting cell. Cells convert the transmitted force into biological responses including migration, proliferation and differentiation. The Garcia lab has previously engineered an integrin-specific hydrogel system resulting in changes in mesenchymal stem cell (MSC) gene expression, secretome, and ultimately regenerative capacity in a murine bone repair model. However, the mechano-biological mechanism driving this cell response to varying hydrogel biophysical and biochemical properties has yet to be studied ...


Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma 2019 The University of Western Ontario

Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma

Electronic Thesis and Dissertation Repository

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote regeneration and restore mechanical function to the intervertebral disc. This study developed composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A minimal protocol was developed to decellularize bovine NP that reduced nuclear content while preserving key extracellular matrix components predicted to be favourable for bioactivity. The resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an NP-like phenotype. These studies ...


Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding 2019 University of Maine

Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding

Electronic Theses and Dissertations

Two-photon microscopy (TPM) is a powerful, versatile imaging modality for the study of biological systems. This thesis overviews the relevant physics involved in TPM, design considerations and process of constructing a home-built, two-photon microscope, and provides a set of procedures to operate the system. Furthermore, this work explores several applications of TPM through the study of single-cell metabolism and imaging the cellular-material interface. Explored in particular depth was the imaging of cellulose nanofiber (CNF) materials, with the goal of understanding the three-dimensional nature of fibroblast cell growth when embedded within the materials. This work uncovered several optical properties of CNF ...


Identifying Extracellular Matrix Protein Turnover Rates For Tissue Engineers, Alita F. Miller 2019 Purdue University

Identifying Extracellular Matrix Protein Turnover Rates For Tissue Engineers, Alita F. Miller

The Journal of Purdue Undergraduate Research

No abstract provided.


Genome-Edited Animals Are Not Transgenic Animals: Moving Toward Responsible Research And Innovation With New Biotechnologies, Yvie Yao 2019 University of Minnesota Law School

Genome-Edited Animals Are Not Transgenic Animals: Moving Toward Responsible Research And Innovation With New Biotechnologies, Yvie Yao

Minnesota Journal of Law, Science & Technology

No abstract provided.


Digital Commons powered by bepress