Open Access. Powered by Scholars. Published by Universities.®

VLSI and Circuits, Embedded and Hardware Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

600 Full-Text Articles 784 Authors 521,627 Downloads 57 Institutions

All Articles in VLSI and Circuits, Embedded and Hardware Systems

Faceted Search

600 full-text articles. Page 4 of 27.

Metamaterials In 5g Antenna Designs: A Bibliometric Survey, Hema D. Raut, Laxmikant K. Shevada, Rajeshwari R. Malekar, Amruta S. Dixit, Sumit Kumar 2021 Symbiosis International University

Metamaterials In 5g Antenna Designs: A Bibliometric Survey, Hema D. Raut, Laxmikant K. Shevada, Rajeshwari R. Malekar, Amruta S. Dixit, Sumit Kumar

Library Philosophy and Practice (e-journal)

The demand of high gain and wideband compact antenna designs are gaining importance to fulfil the need of 5G communication systems. This has opened the doors for the researchers to explore 5G antennas incorporating metamaterials as they can meet the requirement of high gain and wideband compact antennas. Overview of various metamaterial-based antenna designs including Electromagnetic Band Gap (EBG), artificial Magnetic Conductor (AMC), Frequency Selective Surface (FSS) and Partially Reflective Surface (PRS) are discussed in the paper. The paper primarily focuses on bibliometric survey of various types of 5G metamaterial antennas in terms of number of documents published, leading universities …


Design Of An Ultra-Wideband Frequency-Modulated Continuous Wave Short Range Radar System For Extending Independent Living, Toai-Chi Nguyen 2021 California Polytechnic State University, San Luis Obispo

Design Of An Ultra-Wideband Frequency-Modulated Continuous Wave Short Range Radar System For Extending Independent Living, Toai-Chi Nguyen

Master's Theses

Falls in the disabled and elderly people have been a cause of concern as they can be immobilized by the fall and have no way to contact others and seek assistance. The proposed frequency modulated continuous wave (FMCW) short range radar (SRR) system, which uses ultra-wideband (UWB) signals can provide immediate assistance by monitoring and detecting fall events. The unique characteristics of this system allow for a frequency-based modulation system to carry out triangulation and sense the location of the fall through the usage of a continuous chirp signal that linearly sweeps frequency. This project focuses on the development, design …


How To Cleave Wafers: Latticegear Protocol, Shenshen Wan, George Patrick Watson 2021 Singh Center for Nanotechnology

How To Cleave Wafers: Latticegear Protocol, Shenshen Wan, George Patrick Watson

Protocols and Reports

We report on the process protocol to cleave wafers using LatticeGear cleaving and scribing tools sets.


Optimization Of Bilayer Lift-Off Process To Enable The Gap Size Of 1Μm Using Lor 3a And S1813, Yeonjoon Suh, George Patrick Watson 2021 Singh Center for Nanotechnology

Optimization Of Bilayer Lift-Off Process To Enable The Gap Size Of 1Μm Using Lor 3a And S1813, Yeonjoon Suh, George Patrick Watson

Protocols and Reports

Bilayer lift-off process for 1μm feature size is demonstrated using LOR 3A and S1813 photoresist. The thickness of photoresists was fixed, whereas development time is varied. The process was further investigated by measuring the undercut depth and undercut rate by scanning electron microscopy. An optimized and reproducible recipe is provided.


Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang 2021 The University of Western Ontario

Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang

Electronic Thesis and Dissertation Repository

In recent years, Magneto-Rheological (MR) fluids has been used in various fields such as robotics, automotive, aerospace, etc. The most common use of the MR fluids is within a clutch-like mechanism, namely an MR clutch. When mechanical input is coupled to the input part of the MR clutch, the MR clutch provides a means of delivering this mechanical input to its output, through the MR fluids. The combination of the mechanical input device and the MR clutch is called an MR actuator. The MR actuator features inherently compliance owing to the characteristic of the MR fluids while also offering higher …


Diseño E Implementación De Un Sensor De Impedancia Para La Medición De La Fracción Volumétrica En Un Tubo, Jhon William Fagua Arias, Oscar Arley Moreno Bejarano 2021 Universidad de la Salle, Bogotá

Diseño E Implementación De Un Sensor De Impedancia Para La Medición De La Fracción Volumétrica En Un Tubo, Jhon William Fagua Arias, Oscar Arley Moreno Bejarano

Ingeniería Eléctrica

Este documento presenta una propuesta para comparar dos métodos, que permiten tener la medida de las fracciones volumétricas de una mezcla de fluidos bifásica, por medio de la respuesta al cambio de la capacitancia entre dos electrodos. A través de un dispositivo electrónico, llamado puente autobalanceado, se tomó el registro de una sección volumétrica y se comparó entre dos métodos de medición, con esto se obtuvo la permitividad o capacitancia del fluido, y se consiguió el volumen de forma eléctrica, el cual se contrastó con la magnitud eléctrica medida entre una lectura patrón y la obtenida en el circuito contenido …


Combining Approximate Computing And Adiabatic Logic For Low-Power And Energy-Efficient Iot Edge Computing, Wu Yang 2021 University of Kentucky

Combining Approximate Computing And Adiabatic Logic For Low-Power And Energy-Efficient Iot Edge Computing, Wu Yang

Theses and Dissertations--Electrical and Computer Engineering

The growing data-intensive applications that run on IoT edge devices require the circuit to be low-power consumption and energy-efficient for limited resources. As conventional Complementary Metal-Oxide-Semiconductor (CMOS) scales down to the nanometer technology node, it reaches its limits, such as leakage and power consumption. Adiabatic logic and approximate computing are emerging techniques for the low-power circuit. Adiabatic logic can recycle energy which is a promising solution for building energy-efficient circuits. However, the power clock scheme and dual-rail structure of adiabatic logic increase the overall area. Power consumption is further reduced by applying approximate computing while reducing the complexity and size …


Designing Novel Hardware Security Primitives For Smart Computing Devices, Amitkumar Degada 2021 University of Kentucky

Designing Novel Hardware Security Primitives For Smart Computing Devices, Amitkumar Degada

Theses and Dissertations--Electrical and Computer Engineering

Smart computing devices are miniaturized electronics devices that can sense their surroundings, communicate, and share information autonomously with other devices to work cohesively. Smart devices have played a major role in improving quality of the life and boosting the global economy. They are ubiquitously present, smart home, smart city, smart girds, industry, healthcare, controlling the hazardous environment, and military, etc. However, we have witnessed an exponential rise in potential threat vectors and physical attacks in recent years. The conventional software-based security approaches are not suitable in the smart computing device, therefore, hardware-enabled security solutions have emerged as an attractive choice. …


Logical Modeling Of Adiabatic Logic Circuits Using Vhdl, Lee Belfore 2021 Old Dominion University

Logical Modeling Of Adiabatic Logic Circuits Using Vhdl, Lee Belfore

Electrical & Computer Engineering Faculty Publications

The underlying nature of adiabatic circuits is most accurately characterized at the circuit level as it is for traditional technologies. In order to scale system designs for adiabatic logic technologies, modeling of adiabatic circuits at the logic level is necessary. Logic level models of adiabatic logic circuits can facilitate the design, development, and verification of large scale digital systems that may be infeasible using circuit simulators. Adiabatic logic circuits can be powered with a four stage power clock consisting of idle, charge, hold, and recover stages that provides for adiabatic charging and charge recovery to give adiabatic circuits their low …


Soil Sensor Network, Andrea Wyder, Ross Klonowski, Alexis Alves, Luke Farnsworth 2021 The University of Akron

Soil Sensor Network, Andrea Wyder, Ross Klonowski, Alexis Alves, Luke Farnsworth

Williams Honors College, Honors Research Projects

Water management during crop irrigation is a problem for the agricultural industry. To help farmers better maintain water usage, a wireless soil sensor network comprised of a sensor pod and wireless communication has been designed and implemented. It was proven that the sensor pod can be installed 6-8 inches below the ground and communicate up to at least a 6km distance back to the gateway. The senor pod shells have a 2 mm thick shell to prevent the pod from shattering when coming into contact with the ground after being released from the planter, as calculated through the force of …


Hard Hat Ambient Liability Observer (Halo), Hunter Hykes, Nathan Kish, Brian Thomson 2021 The University of Akron

Hard Hat Ambient Liability Observer (Halo), Hunter Hykes, Nathan Kish, Brian Thomson

Williams Honors College, Honors Research Projects

Capturing workplace incident information is a growing area of concern for most companies. To assist with this, the design team proposed the H.A.L.O. This design uses time-of-flight sensors connected to LEDs to create a proximity-based hazard warning system. It also records incident data using an accelerometer and micro-SD card. This helps workers avoid some of the most common workplace injuries, slips, trips, and falls and accidental collisions.

Students have created a design with engineering, and marketing requirements that accomplish this task. The proposed design allows for this monitoring and mitigation systems to be attached to hard hats. Team members developed …


Smart Doggy Door, Jaret Helminski, Brandon Caldwell, Jason Marcum, Nathaniel Hall 2021 The University of Akron

Smart Doggy Door, Jaret Helminski, Brandon Caldwell, Jason Marcum, Nathaniel Hall

Williams Honors College, Honors Research Projects

The smart doggy door is an engineering senior design project which will be completed in the spring of 2021. The goal of this project is to design and implement a dog door that can detect when a dog is near. After that it will determine if the dog is allowed to use the door and it will then open if the dog is allowed to go through the door. This device will also send a notification to the dogs owner via an app on their phone. This device will allow dog owners to keep unwanted animals out as well as …


Design Project: Smart Headband, John Michel, Jack Durkin, Noah Lewis 2021 The University of Akron

Design Project: Smart Headband, John Michel, Jack Durkin, Noah Lewis

Williams Honors College, Honors Research Projects

Concussion in sports is a prevalent medical issue. It can be difficult for medical professionals to diagnose concussions. With the fast pace nature of many sports, and the damaging effects of concussions, it is important that any concussion risks are assessed immediately. There is a growing trend of wearable technology that collects data such as steps and provides the wearer with in-depth information regarding their performance. The Smart Headband project created a wearable that can record impact data and provide the wearer with a detailed analysis on their risk of sustaining a concussion. The Smart Headband uses accelerometers and gyroscopes …


Automated Blind Control, Daniel Nahra, Matthew Lacek, Timothy Kurczewski, William Daulton Baksa 2021 The University of Akron

Automated Blind Control, Daniel Nahra, Matthew Lacek, Timothy Kurczewski, William Daulton Baksa

Williams Honors College, Honors Research Projects

The objective of this project would be to design and prototype an automated, light and temperature sensing window blinds system. The device would detect temperature, both inside and outside, and incoming sunlight to determine proper window blind position for maximum energy savings. The user would also have the ability to change the settings of the blind from a remote device to a setting that they desire at any given time


Solar Photovoltaic Performance Monitoring: A Bibliometric Review, Research Gaps And Opportunities, Javed Sayyad, Paresh Nasikkar 2020 Symbiosis International (Deemed University), Pune

Solar Photovoltaic Performance Monitoring: A Bibliometric Review, Research Gaps And Opportunities, Javed Sayyad, Paresh Nasikkar

Library Philosophy and Practice (e-journal)

Electrical power generation has been revolutionized by growing demand and use of Renewable Energy (RE) sources such as Solar Photovoltaic (SPV) as the main electricity source in modern times. The main objective of this bibliometric analysis is to understand the scope of the literature available for SPV performance characterization. This detailed reviewed was performed on the documents related to SPV research considering all the subject categories from Scopus and Web of Science (WoS) databases. The patterns for the particular set of keywords were broke down with the recuperated outcomes from Scopus database in the language, publication type, year of publication, …


Efficient Hardware Architectures For Public-Key Cryptosystems, Mohammadamin Saburruhmonfared 2020 The University of Western Ontario

Efficient Hardware Architectures For Public-Key Cryptosystems, Mohammadamin Saburruhmonfared

Electronic Thesis and Dissertation Repository

Finite field arithmetic plays an essential role in public-key cryptography as all the underlying operations are performed in these fields. The finite fields are either prime fields or binary fields. Binary field elements can mainly be represented on a polynomial basis or a normal basis (NB). NB representation offers a simple squaring operation, especially in hardware. However, multiplication is typically complex, and a particular subset of NB called Gaussian Normal Basis (GNB) features an efficient multiplication operation used in this work. The first part of this thesis has focused on improving finite field arithmetic architectures over GNB. Among different arithmetic …


Longitudinal Partitioning Waveform Relaxation Methods For The Analysis Of Transmission Line Circuits, Tarik Menkad 2020 The University of Western Ontario

Longitudinal Partitioning Waveform Relaxation Methods For The Analysis Of Transmission Line Circuits, Tarik Menkad

Electronic Thesis and Dissertation Repository

Three research projects are presented in this manuscript. Projects one and two describe two waveform relaxation algorithms (WR) with longitudinal partitioning for the time-domain analysis of transmission line circuits. Project three presents theoretical results about the convergence of WR for chains of general circuits.

The first WR algorithm uses a assignment-partition procedure that relies on inserting external series combinations of positive and negative resistances into the circuit to control the speed of convergence of the algorithm. The convergence of the subsequent WR method is examined, and fast convergence is cast as a generic optimization problem in the frequency-domain. An automatic …


Design And Implementation Of An Isfet Sensor With Integration Of An On-Chip Processor, Shaghayegh Aslanzadeh 2020 University of Tennessee, Knoxville

Design And Implementation Of An Isfet Sensor With Integration Of An On-Chip Processor, Shaghayegh Aslanzadeh

Doctoral Dissertations

Portable sensors are used in many applications. Among them, pH sensors are suitable for quantifying and identifying various analytes in real-time and doing so non-invasively. The analytes may have environmental impact such as in water quality monitoring. The analytes may also have biological impact such as monitoring cell culture or remote patient health assessment. CMOS based sensors are compact and enable low power consumption suitable for these portable applications.

This work reports on the development of a portable CMOS based pH sensor. The contributions of this dissertation are as follows. First, a differential pH sensor, with two different sized electrodes …


Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim 2020 University of Arkansas, Fayetteville

Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim

Graduate Theses and Dissertations

The increasing use of renewable energy has resulted in the need for improved a dc-dc converters. This type of electronic-based equipment is needed to interface the dc voltages normally encountered with solar arrays and battery systems to voltage levels suitable for connecting three phase inverters to distribution level networks. As grid-connected solar power levels continue to increase, there is a corresponding need for improved modeling and control of power electronic converters. In particular, higher levels of boost ratios are needed to connect low voltage circuits (less than 1000 V) to medium voltage levels in the range of 13 kV to …


A Note From The Editor, Daphne Fauber 2020 Purdue University

A Note From The Editor, Daphne Fauber

Ideas: Exhibit Catalog for the Honors College Visiting Scholars Series

This piece is a letter from Daphne Fauber, the editor of this issue of Ideas. In the letter, the editor introduces the work of Dr. Paschalis Gkoupidenis as well as the moment in time in which his Visiting Scholars talk occurs.


Digital Commons powered by bepress