Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,992 Full-Text Articles 2,667 Authors 899,395 Downloads 94 Institutions

All Articles in Electromagnetics and Photonics

Faceted Search

1,992 full-text articles. Page 1 of 83.

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak 2023 Air Force Research Laboratory

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak

Faculty Publications

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1–26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.


National Conference On Computing 4.0 Empowering The Next Generation Of Technology (Era Of Computing 4.0 And Its Impact On Technology And Intelligent Systems), Subhrajit Pradhan Prof (Dr), Chandan Kumar Sahoo Dr., Tarini Prasad Pattnaik Prof., Tamasha Priyadarshini Prof 2023 Principal, GANDHI INSTITUTE OF EXCELLENT TECHNOCRATS (GIET) Ghangapatana, Bhubaneswar

National Conference On Computing 4.0 Empowering The Next Generation Of Technology (Era Of Computing 4.0 And Its Impact On Technology And Intelligent Systems), Subhrajit Pradhan Prof (Dr), Chandan Kumar Sahoo Dr., Tarini Prasad Pattnaik Prof., Tamasha Priyadarshini Prof

Conference Proceedings - Full Volumes

As we enter the era of Computing 4.0, the landscape of technology and intelligent systems is rapidly evolving, with groundbreaking advancements in artificial intelligence, machine learning, data science, and beyond. The theme of this conference revolves around exploring and shaping the future of these intelligent systems that will revolutionize industries and transform the way we live, work, and interact with technology.

Conference Topics

  • Quantum Computing and Quantum Information
  • Edge Computing and Fog Computing
  • Artificial Intelligence and Machine Learning in Computing 4.0
  • Internet of Things (IOT) and Smart Cities
  • Block chain and Distributed Ledger Technologies
  • Cybersecurity and Privacy in the Computing …


Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella 2023 The Graduate Center, City University of New York

Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella

Dissertations, Theses, and Capstone Projects

Ocean Color radiometry uses remote sensing to interpret ocean dynamics by retrieving remote sensing reflectance (𝑅𝑟𝑠) from satellite imagery at different scales and over different time periods. 𝑅𝑟𝑠 spectrum characterizes the ocean color that we observe, and from which we can discern concentrations of chlorophyll, organic and inorganic particles, and carbon fluxes in the ocean and atmosphere. 𝑅𝑟𝑠 is derived from the total radiance at the top of the atmosphere (TOA). However, it only represents up to ten percent of the total signal. Hence, the retrieval of 𝑅𝑟𝑠 from the total radiance at TOA involves the application of atmospheric correction …


Mathematical Model Of An Industrial Robot Built On The Basis Of Linear Motion Mechatron Modules, Matyokubov Nurbek Rustamovich, Rakhimov Temurbek Omonboyevich 2023 Tashkent state technical university named after Islom Karimov, Address: 2, University str., 100095, Tashkent, Uzbekistan. E-mail: nm85@mail.ru,

Mathematical Model Of An Industrial Robot Built On The Basis Of Linear Motion Mechatron Modules, Matyokubov Nurbek Rustamovich, Rakhimov Temurbek Omonboyevich

Chemical Technology, Control and Management

The use of Industry 4.0 technologies in modern production serves to increase production efficiency. Robots and robotic complexes with innovative intelligent control are widely used in industrial production. However, studying their mechanical part, linear motion mechatronic modules and control system is a complex object. The variety and complexity of control methods and operating modes negatively affects the operator's working time and production productivity. In such cases, it is necessary to improve control methods and develop technologies used in industry, including robots and robotic manipulators, which allow to perform short movements with high accuracy and speed. In the article, the mathematical …


Boundary Integral Equation Methods For Superhydrophobic Flow And Integrated Photonics, Kosuke Sugita 2023 New Jersey Institute of Technology

Boundary Integral Equation Methods For Superhydrophobic Flow And Integrated Photonics, Kosuke Sugita

Dissertations

This dissertation presents fast integral equation methods (FIEMs) for solving two important problems encountered in practical engineering applications.

The first problem involves the mixed boundary value problem in two-dimensional Stokes flow, which appears commonly in computational fluid mechanics. This problem is particularly relevant to the design of microfluidic devices, especially those involving superhydrophobic (SH) flows over surfaces made of composite solid materials with alternating solid portions, grooves, or air pockets, leading to enhanced slip.

The second problem addresses waveguide devices in two dimensions, governed by the Helmholtz equation with Dirichlet conditions imposed on the boundary. This problem serves as a …


The Relaying Network In Free-Space Optical Communications Using Optical Amplifiers In Cascaded Configuration, Ucuk Darusalam, Arockia Bazil Raj, Fitri Yuli Zulkifli, Purnomo Sidi Priambodo, Eko Tjipto Rahardjo 2023 Department of Informatics, Universitas Siber Asia, Ragunan, Pasar Minggu 12550, Indonesia

The Relaying Network In Free-Space Optical Communications Using Optical Amplifiers In Cascaded Configuration, Ucuk Darusalam, Arockia Bazil Raj, Fitri Yuli Zulkifli, Purnomo Sidi Priambodo, Eko Tjipto Rahardjo

Makara Journal of Technology

Optical relaying is the best technique to implement free-space optical (FSO) communications as a terrestrial platform. However, atmospheric turbulence (AT) limits the optical-propagation path length. In this study, the implementation of some optical amplifiers (OAs) in cascaded configuration, namely, erbium-doped fiber amplifiers, semiconductor OAs, and Raman amplifiers (RAs), are investigated through simulation. This study aims to search for the maximum link distance of an optical propagation and enhance the FSO performance caused by each configuration of OAs. The optical relaying network consists of three nodes, with each node designed with a space of several kilometers under the influence of AT. …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron 2023 University of Massachusetts Amherst

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd 2023 Mississippi State University

Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd

Theses and Dissertations

The potential for high spatio-temporal resolution microwave measurements has urged the adoption of the signals of opportunity (SoOp) passive radar technique for use in remote sensing. Recent trends in particular target highly complex remote sensing problems such as root-zone soil moisture and snow water equivalent. This dissertation explores the continued open-sourcing of the SoOp coherent bistatic scattering model (SCoBi) and its use in soil moisture sensing applications. Starting from ground-based applications, the feasibility of root-zone soil moisture remote sensing is assessed using available SoOp resources below L-band. A modularized, spaceborne model is then developed to simulate land-surface scattering and delay-Doppler …


Design And Fabrication Of An Optical Blade Tip Timing Sensor, Nick Tomlinson 2023 Clemson University

Design And Fabrication Of An Optical Blade Tip Timing Sensor, Nick Tomlinson

All Theses

Electricity is a vital energy source that powers modern technology. Turbines are heavily relied on in the electric power industry for the conversion of natural energy sources into electricity. These turbines operate under harsh conditions which increase the likelihood of blade damage. Structural health monitoring of a turbine’s blades is important to detect problems before a blade experiences failure. The blade tip timing method can be used to monitor blade vibrations and determine if damage has occurred. An optical blade tip timing sensor is designed and fabricated to advance the field of sensing in the power industry.


Characteristics Of Refractivity And Sea State In The Marine Atmospheric Surface Layer And Their Influence On X-Band Propagation, Douglas Matthew Pastore 2023 Coastal Carolina University

Characteristics Of Refractivity And Sea State In The Marine Atmospheric Surface Layer And Their Influence On X-Band Propagation, Douglas Matthew Pastore

Electronic Theses and Dissertations

Predictions of environmental conditions within the marine atmospheric surface layer (MASL) are important to X-band radar system performance. Anomalous propagation occurs in conditions of non-standard atmospheric refractivity, driven by the virtually permanent presence of evaporation ducts (ED) in marine environments. Evaporation ducts are commonly characterized by the evaporation duct height (EDH), evaporation duct strength, and the gradients below the EDH, known as the evaporation duct curvature. Refractivity, and subsequent features, are estimated in the MASL primarily using four methods: in-situ measurements, numerical weather and surface layer modeling, boundary layer theory, and inversion methods.

The existing refractivity estimation techniques often assume …


Miniature, Submersible Electromagnetic Pumps Of Molten Lead And Sodium For Gen-Iv Nuclear Reactors Development, Ragai M. Altamimi 2023 University of New Mexico - Main Campus

Miniature, Submersible Electromagnetic Pumps Of Molten Lead And Sodium For Gen-Iv Nuclear Reactors Development, Ragai M. Altamimi

Nuclear Engineering ETDs

Heavy metals and alkali Liquid Metals are suitable coolants for Generation IV terrestrial nuclear reactors for operating at elevated temperatures for achieving plant thermal efficiency more than 40% and the thermochemical generation of hydrogen fuel. In addition, the low vapor pressure of these liquids eliminates the need for a pressure vessel and instead operates slightly below ambient pressure. A primary issue with the uses of these coolants is their compatibility with nuclear fuel, cladding and core structure materials at elevated temperatures more than 500oC. Therefore, in pile and out-of-pile test loops have been constructed or being considered for quantifying the …


Tunable Linewidth Chip-Level Lasers Using Hybrid Integration Methods, Charles Porter 2023 Clemson University

Tunable Linewidth Chip-Level Lasers Using Hybrid Integration Methods, Charles Porter

All Theses

Photonic integrated circuits (PICs) have significant value in today’s world of research. They enable devices to experience large reductions in size, weight, operation power, and cost (SWAPc), making photonic technology more accessible than ever. The functionality of PICs is greatly enhanced due to the realization of both active and passive devices within a single device structure. This is made possible through hybrid integration, which utilizes various coupling methods to transfer light from an active chip to a passive chip. Hybrid integration technology tremendously expands the capabilities of PICs, leading to a plethora of applications. One significant application is that of …


Adaptive Gps Antenna Array Beam Nulling Effectiveness Under Varying Antenna Element Positioning, Aadesh Neel 2023 University of New Mexico - Main Campus

Adaptive Gps Antenna Array Beam Nulling Effectiveness Under Varying Antenna Element Positioning, Aadesh Neel

Electrical and Computer Engineering ETDs

Global Positioning System (GPS) is an essential part of modern life but is susceptible to same frequency jamming. GPS jamming can add excessive noise to a received low power signal and have the capability to change or completely distort information being sent through the GPS signal. Adaptive antenna arrays have long since been a solution to mitigating GPS jamming via beamnulling algorithms. However, there is little research on the effectiveness of these beamnulling algorithms under varying element positioning. In this work, an adaptive antenna array, consisting of Right-Hand Circularly Polarized (RHCP) nearly square GPS antenna elements, was constructed and tested …


Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri 2023 Chapman University

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Photophoretic Optical Trapping, Essa Ababseh 2023 California Polytechnic State University, San Luis Obispo

Photophoretic Optical Trapping, Essa Ababseh

Electrical Engineering

Photophoretic Optical Trapping (POT) is a relatively new concept in the field of optics which has potential application in 3D display. The POT is realized by confining a particle within a very small location of the optical system, mostly around the focus. The particle, if captured by the beam, has the potential to print visible 3D images in free space. Our POT system is encapsulated by an acrylic enclosure, which also incorporates a biconvex lens as well as an adjustable focus laser module. Particles are released around the top of the lens’ focal point until the captured particle can be …


Sky Survey Radio Telescope, Jack E. McGuigan 2023 California Polytechnic State University, San Luis Obispo

Sky Survey Radio Telescope, Jack E. Mcguigan

Electrical Engineering

This document outlines the design of a radio telescope designed to perform hydrogen line sky surveys. The telescope produces radio images mapping the intensity and relative velocities of hydrogen concentrations to their sky coordinates. Over the course of a day, the telescope images the regions of space visible to it, allowing sky survey imagery to be updated daily. Sky survey images are comprised of an array of pixels corresponding to specific sky coordinates. Each 8-bit RGB pixel contains information on the concentrations of hydrogen in the brightness and relative velocity in the color. Radio images mapping the concentrations and velocities …


Wireless Energy Harvesting System, Matthew Palma, Audrey Toop, Andrew Fahey 2023 California Polytechnic State University, San Luis Obispo

Wireless Energy Harvesting System, Matthew Palma, Audrey Toop, Andrew Fahey

Electrical Engineering

The modern world is built upon wireless transmission of data. The signals that carry this data travel through the air, an untapped source of power. Unreceived transmissions are dissipated into useless forms of energy when they should be reclaimed. Wireless electronics can theoretically be powered by harvesting energy from the electromagnetic signals in the wireless internet frequency band. The aim of this project is to develop a system to capture ambient energy, convert it into DC power, and store the power for later use. The product will consist of three subsystems: an antenna receiver, a rectifier and voltage-multiplier, and a …


Design, Modeling, And Testing Of A Novel Inductor For Electric Vehicles: Iron Nitride Soft Magnetic Composites, Sydney F. Fultz-Waters, Jacob Krynock 2023 California Polytechnic State University, San Luis Obispo

Design, Modeling, And Testing Of A Novel Inductor For Electric Vehicles: Iron Nitride Soft Magnetic Composites, Sydney F. Fultz-Waters, Jacob Krynock

Materials Engineering

New technology for electric vehicles (EVs) must meet the requirements of higher energy usage, lower costs, and more sustainable source materials. One promising material for EV power system components is iron nitride (IN) soft magnetic composites (SMCs) because of their competitive magnetic properties and high abundance of the source materials. As part of an ongoing program at Sandia National Laboratories, this project focused on using computer modeling to optimize the prototyping process for an iron nitride SMC toroidal inductor to reach a target inductance of 600 μH. Four inductors with different combinations of wiring (26 AWG and 20 AWG) and …


Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati 2023 New Jersey Institute of Technology

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids [U.S. Patent Us11650370b2], Hengky Chandrahalim, Kyle T. Bodily 2023 Air Force Institute of Technology

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids [U.S. Patent Us11650370b2], Hengky Chandrahalim, Kyle T. Bodily

Faculty Publications

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Digital Commons powered by bepress