Approximate And Sample Entropy Of Center Of Pressure In Unperturbed Tandem Standing: Contribution Of Embedding Dimension And Tolerance,
2023
Grand Valley State University
Approximate And Sample Entropy Of Center Of Pressure In Unperturbed Tandem Standing: Contribution Of Embedding Dimension And Tolerance, Jayla Mashae Wesley
Masters Theses
Approximate entropy (ApEn) and sample entropy (SampEn) are statistical methods designed to quantify the regularity or predictability of a time series. Although ApEn has been a prominent choice for use, it is currently unclear as to which method and parameter selection combination is optimal for its application in biomechanics. The goal of this thesis was to examine the difference between ApEn and SampEn related to center of pressure (COP) data during standing balance tasks, while also refining tolerance r, to determine entropy optimization. Six participants completed five 30-second, feet together and tandem standing, trials under eyes-open and eyes-closed conditions. Ground …
Dense & Attention Convolutional Neural Networks For Toe Walking Recognition,
2023
Chapman University
Dense & Attention Convolutional Neural Networks For Toe Walking Recognition, Junde Chen, Rahul Soangra, Marybeth Grant-Beuttler, Y. A. Nanehkaran, Yuxin Wen
Physical Therapy Faculty Articles and Research
Idiopathic toe walking (ITW) is a gait disorder where children’s initial contacts show limited or no heel touch during the gait cycle. Toe walking can lead to poor balance, increased risk of falling or tripping, leg pain, and stunted growth in children. Early detection and identification can facilitate targeted interventions for children diagnosed with ITW. This study proposes a new one-dimensional (1D) Dense & Attention convolutional network architecture, which is termed as the DANet, to detect idiopathic toe walking. The dense block is integrated into the network to maximize information transfer and avoid missed features. Further, the attention modules are …
Portable Diffuse Reflectance Spectroscopy For Non-Invasive And Quantitative Assessment Of The Parathyroid Glands Viability During Surgery,
2023
Kennesaw State University
Portable Diffuse Reflectance Spectroscopy For Non-Invasive And Quantitative Assessment Of The Parathyroid Glands Viability During Surgery, Mark Romine, Linh Luong, Alex Moazzen, Katie Cho, Paul Lee
Symposium of Student Scholars
Portable Diffuse Reflectance Spectroscopy for Non-invasive and Quantitative Assessment of the Parathyroid Glands Viability During Surgery
Mark Romine, Linh Luong, Alex Moazzen, Katie Cho and Paul Lee
The parathyroid glands (PTGs) are responsible for the regulation of calcium levels in the blood by secreting a parathyroid hormone. This parathyroid hormone then regulates the body’s absorption, storage, and secretion of calcium, which can directly affect the way muscles and nerves operate. PTGs are often at risk of damage, or accidental removal during thyroid surgeries, because it is challenging to identify PTGs and to determine their viability. Current methods of visual inspections …
Wireless, Handheld Diffuse Reflectance Spectroscopy To Quantify Tissue Microvascular Hemodynamics,
2023
Kennesaw State University
Wireless, Handheld Diffuse Reflectance Spectroscopy To Quantify Tissue Microvascular Hemodynamics, Linh Luong, Alex Moazzen, Mark Romine, Katie Cho, Paul Lee
Symposium of Student Scholars
Diffuse Reflectance Spectroscopy (DRS) is a non-invasive optical method to characterize tissue optical properties for disease diagnosis and health monitoring. Two optical fibers are often used in a DRS system: one to deliver light to the tissue and the other to gather diffuse reflectance spectra, which provide quantitative details about the structure and composition of the tissue. The conventional DRS system, however, is expensive, bulky, and composed of fragile optical fibers and multiple electrical connections. Here we propose to build a wireless, handheld, and fiber-less diffuse optical spectroscopy system. Unfortunately, the diffusion approximation utilized for data analysis of the conventional …
Computational Design Of Fiber-Optic Probes For Biosensing,
2023
University of Texas at Tyler
Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna
Electrical Engineering Theses
This thesis presents a study on the optical characteristics of hollow-core photonic crystal fibers (HC-PCFs) with a band gap cladding structure and their applications in optical fiber sensing. This 800B HC-PCF exhibited excellent optical properties and has a flexible structure, which makes them suitable for a wide range of industrial applications. Finite element simulations and structural optimization designs were conducted using the surface plasmon resonance (SPR) technique to determine the optimal performance parameters of the 800B HC-PCF. The fiber was further modified using the SPR technique to improve its practical detection capabilities. The performance of the modified fiber was observed …
Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality,
2023
Chapman University
Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De
Engineering Faculty Articles and Research
Colorectal cancer is a life-threatening disease. It is the second leading cause of cancer-related deaths in the United States. Stapled anastomosis is a rapid treatment for colorectal cancer and other intestinal diseases and has become an integral part of routine surgical practice. However, to the best of our knowledge, there is no existing work simulating intestinal anastomosis that often involves sophisticated soft tissue manipulations such as cutting and stitching. In this paper, for the first time, we propose a novel split and join approach to simulate a side-to-side stapled intestinal anastomosis in virtual reality. We mimic the intestine model using …
An Xai Approach For Covid-19 Detection Using Transfer Learning With X-Ray Images,
2023
Old Dominion University
An Xai Approach For Covid-19 Detection Using Transfer Learning With X-Ray Images, Salih Sarp, Ferhat Ozgur Catak, Murat Kuzlu, Umit Cali, Huseyin Kusetogullari, Yanxiao Zhao, Gungor Ates, Ozgur Guler
Engineering Technology Faculty Publications
The coronavirus disease (COVID-19) has continued to cause severe challenges during this unprecedented time, affecting every part of daily life in terms of health, economics, and social development. There is an increasing demand for chest X-ray (CXR) scans, as pneumonia is the primary and vital complication of COVID-19. CXR is widely used as a screening tool for lung-related diseases due to its simple and relatively inexpensive application. However, these scans require expert radiologists to interpret the results for clinical decisions, i.e., diagnosis, treatment, and prognosis. The digitalization of various sectors, including healthcare, has accelerated during the pandemic, with the use …
Synthetic Heart Sound Dataset,
2023
Technological University Dublin
Synthetic Heart Sound Dataset, Davoud Shariat Panah, Andrew Hines, Susan Mckeever
Datasets
The repository contains synthetic heart sound recordings. The publication related to this dataset is "Exploring the impact of noise and degradations on heart sound classification models", Biomedical Signal Processing and Control journal.
Electron Beam Treatment For The Removal Of 1,4-Dioxane In Water And Wastewater,
2023
Old Dominion University
Electron Beam Treatment For The Removal Of 1,4-Dioxane In Water And Wastewater, Robert Pearce, Xi Li, John Vennekate, Gianluigi Ciovati, Charles Bott
Electrical & Computer Engineering Faculty Publications
Electron beam (e-beam) treatment uses accelerated electrons to form oxidizing and reducing radicals when applied to water without the use of external chemicals. In this study, electron beam treatment was used to degrade 1,4-dioxane in several water matrices. Removal improved in the progressively cleaner water matrices and removals as high as 94% to 99% were observed at a dose of 2.3 kGy in secondary effluent. 1,4-dioxane removal was confirmed to be primarily through hydroxyl radical oxidation. The calculated electrical energy per order was found to be 0.53, 0.26, and 0.08 kWh/m3/order for secondary effluent (Avg. total organic carbon …
Ultrasensitive Tapered Optical Fiber Refractive Index,
2023
Old Dominion University
Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter
Electrical & Computer Engineering Faculty Publications
Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …
Atlas-Based Shared-Boundary Deformable Multi-Surface Models Through Multi-Material And Two-Manifold Dual Contouring,
2023
Old Dominion University
Atlas-Based Shared-Boundary Deformable Multi-Surface Models Through Multi-Material And Two-Manifold Dual Contouring, Tanweer Rashid, Sharmin Sultana, Mallar Chakravarty, Michel Albert Audette
Electrical & Computer Engineering Faculty Publications
This paper presents a multi-material dual “contouring” method used to convert a digital 3D voxel-based atlas of basal ganglia to a deformable discrete multi-surface model that supports surgical navigation for an intraoperative MRI-compatible surgical robot, featuring fast intraoperative deformation computation. It is vital that the final surface model maintain shared boundaries where appropriate so that even as the deep-brain model deforms to reflect intraoperative changes encoded in ioMRI, the subthalamic nucleus stays in contact with the substantia nigra, for example, while still providing a significantly sparser representation than the original volumetric atlas consisting of hundreds of millions of voxels. The …
Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study,
2023
Old Dominion University
Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette
Electrical & Computer Engineering Faculty Publications
Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …
Dfhic: A Dilated Full Convolution Model To Enhance The Resolution Of Hi-C Data,
2023
Old Dominion University
Dfhic: A Dilated Full Convolution Model To Enhance The Resolution Of Hi-C Data, Bin Wang, Kun Liu, Yaohang Li, Jianxin Wang
Computer Science Faculty Publications
Motivation: Hi-C technology has been the most widely used chromosome conformation capture(3C) experiment that measures the frequency of all paired interactions in the entire genome, which is a powerful tool for studying the 3D structure of the genome. The fineness of the constructed genome structure depends on the resolution of Hi-C data. However, due to the fact that high-resolution Hi-C data require deep sequencing and thus high experimental cost, most available Hi-C data are in low-resolution. Hence, it is essential to enhance the quality of Hi-C data by developing the effective computational methods.
Results: In this work, we propose …
Design And Evaluation Of Fabric Cooling Channels For Twisted Coiled Actuators,
2022
The University of Western Ontario
Design And Evaluation Of Fabric Cooling Channels For Twisted Coiled Actuators, Alex Lizotte
Electronic Thesis and Dissertation Repository
Twisted coiled actuators (TCAs) are biomimetic and inexpensive artificial muscles. To enable their integration into soft robotics, a novel cooling apparatus was designed, consisting of a fabric channel to house the TCA and a miniature air pump for forced convection. The channel was designed to be lightweight, flexible, and easy to integrate into a soft wearable robotic device. The effect that the channel dimensions had on TCA performance (cooling time, heating time, and stroke) was investigated by testing combinations of three widths (6, 8, and 10 mm) and three heights (4, 6, and 8 mm). In general, as the channel …
Small-Separation Speckle Contrast Optical Spectroscopy For Intraoperative Assessment Of Parathyroid Glands Viability During Thyroid Surgery,
2022
Kennesaw State University
Small-Separation Speckle Contrast Optical Spectroscopy For Intraoperative Assessment Of Parathyroid Glands Viability During Thyroid Surgery, Connor Berger
Symposium of Student Scholars
The parathyroid glands (PTGs) are often damaged during thyroid surgeries due to a lack of methods identifying PTGs and assessing their viability. Damage to PTGs can cause hypocalcemia, a deficiency of calcium in the body. This complication can lead to detrimental consequences with economic burden. The surgeon’s current method of viability assessment is qualitative and subjective. Our technical solution is to employ an optical technique called speckle contrast optical spectroscopy (SCOS) that noninvasively quantifies the blood flow index (Db) of biological tissues at deep tissue levels (>1cm). The goal of this project is to verify SCOS at small source-detector-separation …
Engineering 3d Bioprinted Cardiac Spheroidal Droplets With Cardiomyocytes And Cardiac Fibroblasts For Tissue Engineering And Drug Cytotoxicity Studies,
2022
University of Texas at El Paso
Engineering 3d Bioprinted Cardiac Spheroidal Droplets With Cardiomyocytes And Cardiac Fibroblasts For Tissue Engineering And Drug Cytotoxicity Studies, Raven El Khoury
Open Access Theses & Dissertations
Engineering is the supreme human endeavor that involves harnessing the scientific understanding of the natural world to design and invent objects to improve the society around us. Biomedical engineering is the implementation of concepts acquired from engineering in biology and medicine that aims to improve human health through the integration of engineering with biomedical sciences. The mission of a biomedical engineer is to develop technologies that help advance the quality of peopleâ??s health using various tools and materials with one passion and goal: making the patient's life longer and easier. Tissue engineering is developed from the field of biomaterials and …
An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery,
2022
University of Texas at Tyler
An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin
Electrical Engineering Theses
Inflammatory biomarkers present in the human body play a vital role in medical field by guiding the clinician in decision-making for many diseases. The levels of these inflammatory biomarkers are associated with the severity and progress of several diseases. Researchers have found that increasing severity of many diseases such as cardiovascular disease, after surgery infection, and adverse clinical outcomes due to infectious diseases, results in the elevation of the level of inflammatory biomarkers in human sweat. Furthermore, the inflammatory cytokines indicate the pathophysiology and prognosis of critically ill SARS‑CoV‑2 patients. In this thesis work, different sensors have been developed for …
Diy Cell Incubator,
2022
California Polytechnic State University, San Luis Obispo
Diy Cell Incubator, Hayden James Jeanor
Electrical Engineering
The purpose of creating a cell Incubator is for the development of cell and tissue production in laboratory settings. Large scale research projects and the medical community grow cells for various reasons, including experiments and creating tissue for patients. However, they cannot simply depend on growing cells in a petri dish that sit on a rack at room temperature. To grow heathy cells in the fastest way possible, they use cell incubators. Cell incubators create an atmosphere within the incubation bay that is designed to promote cell growth. The three main components that need to be constantly regulated, using a …
Identifying And Minimizing Underspecification In Breast Cancer Subtyping,
2022
California Polytechnic State University, San Luis Obispo
Identifying And Minimizing Underspecification In Breast Cancer Subtyping, Jonathan Cheuk-Kiu Tang
Master's Theses
In the realm of biomedical technology, both accuracy and consistency are crucial to the development and deployment of these tools. While accuracy is easy to measure, consistency metrics are not so simple to measure, especially in the scope of biomedicine where prediction consistency can be difficult to achieve. Typically, biomedical datasets contain a significantly larger amount of features compared to the amount of samples, which goes against ordinary data mining practices. As a result, predictive models may fail to find valid pathways for prediction during training on such datasets. This concept is known as underspecification.
Underspecification has been more accepted …
Decellularization Strategies Of Naturally Derived Biomaterials For Tissue Engineering Applications,
2022
University of South Carolina
Decellularization Strategies Of Naturally Derived Biomaterials For Tissue Engineering Applications, Julia Elizabeth Hohn
Theses and Dissertations
In 2017, over 3.5 million peripheral vascular surgeries were performed worldwide with over 400,000 vascular repair or replacement surgeries being performed in the United States each year alone. As the number of vascular repair surgeries, including both coronary and peripheral bypass grafting procedures, continues to increase each year, these statistics indicate an urgent need for more effective and readily available replacement materials. Regenerative medicine and tissue engineering (TE) approaches, including the design, fabrication, and validation of suitable biomaterials in vitro that direct the repair and regeneration of damaged tissues, have been proposed to alleviate this problem. While advanced biomaterials have …
