Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,152 Full-Text Articles 5,063 Authors 521,939 Downloads 155 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

2,152 full-text articles. Page 9 of 74.

Design Of A High-Power Terahertz Emitter Array Using A High-Temperature Superconductor, Ruqayyah Shouk 2022 University of Central Florida

Design Of A High-Power Terahertz Emitter Array Using A High-Temperature Superconductor, Ruqayyah Shouk

Electronic Theses and Dissertations, 2020-

By applying a dc voltage V across the stack of intrinsic Josephson junctions naturally present in the high-temperature superconductor consisting of two parts bismuth, two parts strontium, one part calcium, two parts copper, and a bit more than eight parts oxygen, several groups have been able to obtain coherent THz emission at output powers in the µW range. In order to enhance the output power well into the mW range suitable for many applications, we have studied a compact design of a stand-alone mesa array with gold layers on the top and bottom of the superconductor. In this design, an …


Spectral Broadening For Pulse Compression Using Liquid Alcohols, Jacob A. Stephen, Chathurangani J. Arachchige, TJ Hammond 2022 University of Windsor

Spectral Broadening For Pulse Compression Using Liquid Alcohols, Jacob A. Stephen, Chathurangani J. Arachchige, Tj Hammond

Physics Publications

Although gases, and more recently solids, have been used to create few-cycle pulses, we explore using liquid alcohols for spectral broadening and femtosecond pulse compression. By using a series of 1 cm cuvettes filled with 1-decanol, we have compressed a pulse from 83.6 fs down to 31.3 fs with a spectrum capable of supporting 25 fs pulses without filamentation.We measure the nonlinear index of refraction for various liquids, measuring n2 = (6.8 ± 0.5) × 10−20 m2 W−1 for 1-decanol.We demonstrate liquids to be a compact, simple, versatile, and cost-effective material to obtain broad spectra.


Measurement Of Dispersion And Index Of Refraction Of 1-Decanol With Spectrally Resolved White Light Interferometry, Nathan G. Drouillard, TJ Hammond 2022 University of Windsor

Measurement Of Dispersion And Index Of Refraction Of 1-Decanol With Spectrally Resolved White Light Interferometry, Nathan G. Drouillard, Tj Hammond

Physics Publications

The high density, high nonlinearity, and stability of liquids make them an attractive medium for spectral broadening and supercontinuum generation in ultrafast experiments. To understand ultrashort pulse propagation in these media, their indices of refraction and dispersions must be characterized. We employ a Mach-Zehnder interferometer to generate a series of interferograms, which we refer to as a spectrogram, to develop a new method of using spectrally resolved white light interferometry to determine the refractive indices of materials. We determine the indices of refraction of BK7, sapphire, ethanol, and 1-decanol at 24°C across the visible and near infrared. To our knowledge, …


Using Powder Diffraction To Give Insight Into Structures Of Ir2(Diisocyanomenthane)4x2 [Dimen] (X = Cl; Pf6; Bph4), Mairead Brownell 2022 Claremont Colleges

Using Powder Diffraction To Give Insight Into Structures Of Ir2(Diisocyanomenthane)4x2 [Dimen] (X = Cl; Pf6; Bph4), Mairead Brownell

Scripps Senior Theses

Ir2(dimen)42+ (dimen = 1,8-diisocyanomenthane) has been studied extensively as model compound to better understand catalysis of photochemical reactions. Although Ir2(dimen)42+ has been used primarily to observe the photophysical changes of metal-metal transitions, it gives great insight into the transitions that allow other d8-d8 metal complexes to undergo photochemical processes and generate hydrogen gas. The large visible range by which Ir2(dimen)42+ (1) can be electronically excited in solution is indicative of its two solution phase ground states, which interestingly have been hypothesized to resemble two unique packing structures observed in the powder state. In this study, the powder diffraction patterns of …


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni 2022 CUNY Brooklyn College

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen-Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a ‘probability amplitude’. A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper we present a new perspective on such determinism. The ideas are based on the equations of motion or ‘Quantal Newtonian’ Laws obeyed by each electron. These Laws, derived from the …


Radiative Width Of K*(892) From Lattice Quantum Chromodynamics, Archana Radhakrishnan 2022 William & Mary - Arts & Sciences

Radiative Width Of K*(892) From Lattice Quantum Chromodynamics, Archana Radhakrishnan

Dissertations, Theses, and Masters Projects

In this dissertation, we use lattice quantum chromodynamics to explore the radiative transitions of πK to K, to calculate the radiative width of the resonant K*(892) which appears in the P-wave πK → γK transition amplitude. The matrix elements are extracted from three-point functions calculated in a finite-volume discretized lattice with a pion mass of 284 MeV. The finite-volume amplitudes, which are constrained over a large number of πK energy points and four-momentum transfers, are mapped to the infinite volume transition amplitude by using the Lellouch-Lüscher formalism. The radiative width is determined to be …


Charge Transfer Mediated Triplet Excited State Formation In Donor-Acceptor-Donor Bodipy: Application For Recording Of Holographic Structures In Photopolymerizable Glass, Tatsiana Mikulchyk, Safakath Karuthedath, Catherine S.P. De Castro, Andrey A. Buglak, Aimee Sheehan, Aaron Wieder, Frédéric Laquai, Izabela Naydenova, Mikhail Filatov 2022 Technological University Dublin

Charge Transfer Mediated Triplet Excited State Formation In Donor-Acceptor-Donor Bodipy: Application For Recording Of Holographic Structures In Photopolymerizable Glass, Tatsiana Mikulchyk, Safakath Karuthedath, Catherine S.P. De Castro, Andrey A. Buglak, Aimee Sheehan, Aaron Wieder, FréDéRic Laquai, Izabela Naydenova, Mikhail Filatov

Articles

Donor–acceptor–donor BODIPY triads bearing anthracene or pyrene as electron donating subunits were prepared through a stepwise synthesis. Photoinduced electron transfer and formation of long-lived triplet excited states via spin–orbit charge transfer intersystem crossing (SOCT-ISC) was studied by steady-state and ultrafast pump-probe spectroscopy and further supported by DFT computations. New BODIPYs were found to form triplet states and sensitize singlet oxygen in both polar and non-polar solvents which is unusual for photosensitizers operating via SOCT-ISC. BODIPY-anthracene triad (ABA) was used as a photosensitizer component in a photopolymerizable glass that was prepared by a four-step sol–gel process. ABA in combination with N …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer 2022 CUNY City College

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


The Hitran2020 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.M. Hartmann, V.- M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H.S.P. Müller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S. N. Yurchenko 2022 Old Dominion University

The Hitran2020 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.M. Hartmann, V.- M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H.S.P. Müller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S. N. Yurchenko

Chemistry & Biochemistry Faculty Publications

The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. …


A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert III, Peter F. Bernath 2022 University of Wisconsin-Madison

A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at −26.1 and −50 C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell 2022 Missouri State University

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


Applications Of A Combined Approach Of Kinetic Monte Carlo Simulations And Machine Learning To Model Atomic Layer Deposition (Ald) Of Metal Oxides, Emily Justus 2022 Missouri State University

Applications Of A Combined Approach Of Kinetic Monte Carlo Simulations And Machine Learning To Model Atomic Layer Deposition (Ald) Of Metal Oxides, Emily Justus

MSU Graduate Theses

Metal-oxides such as ZnO or Al2O3 synthesized through Atomic Layer Deposition (ALD) have been of great research interest as the candidate materials for ultra-thin tunnel barriers. In this study, I have applied a 3D on-lattice Kinetic Monte Carlo (kMC) code developed by Timo Weckman’s group to simulate the growth mechanisms of the tunnel barrier layer and to evaluate the role of various experimentally relevant factors in the ALD processes. I have systematically studied the effect of parameters such as the chamber pressure temperature, pulse, and purge times. The database generated from the kMC simulations was subsequently used …


Review Of Current Reactive Force Field Potentials For Use In Simulating The Atomic Layer Deposition Of Alumina On Aluminum, Devon T. Romine 2022 Missouri State University

Review Of Current Reactive Force Field Potentials For Use In Simulating The Atomic Layer Deposition Of Alumina On Aluminum, Devon T. Romine

MSU Graduate Theses

Alumina has recently garnered quite a bit of attention for use as a tunnel barrier in Josephson tunnel junctions. The quality of the metal oxide layer in the Josephson tunnel junction is a key factor in its effectiveness. To optimize the deposition method of alumina, we need a deep understanding of the large-scale surface interactions that cannot be reached using ab initio molecular dynamics. In this study, I have compared two existing reactive force field (ReaxFF) parameters to determine their abilities to model the atomic layer deposition (ALD) of alumina on an aluminum surface. ReaxFF molecular dynamics was chosen because …


Apparatus Improvement And Characterisation For Experiments On Ultra-Cold Plasmas., Jakub Bystrický 2022 Colby College

Apparatus Improvement And Characterisation For Experiments On Ultra-Cold Plasmas., Jakub Bystrický

Honors Theses

Apparatus for creating ultra-cold neutral plasmas (UNPs) was improved and data on plasma expansion was collected. We increase the trapping efficiency of a quadrupole magneto-optical trap (MOT) by installing a tapered amplifier to increase the power of the cooling laser used to trap atoms. We achieve an improvement in density of trapped atoms from 1 x 1010 cm-3 to 2.5 - 4.5 x 1010 cm-3. In addition, to improve precision and decrease systematic error, the magnetic field induced by inductive current in the MOT's anti-helmholtz coils was suppressed. This was achieved by installing a KEPCO …


Coupled Dynamics Of Spin Qubits In Optical Dipole Microtraps: Application To The Error Analysis Of A Rydberg-Blockade Gate, L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, Charles I. Sukenik, D. V. Kupriyanov 2022 Old Dominion University

Coupled Dynamics Of Spin Qubits In Optical Dipole Microtraps: Application To The Error Analysis Of A Rydberg-Blockade Gate, L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, Charles I. Sukenik, D. V. Kupriyanov

Physics Faculty Publications

Single atoms in dipole microtraps or optical tweezers have recently become a promising platform for quantum computing and simulation. Here we report a detailed theoretical analysis of the physics underlying an implementation of a Rydberg two-qubit gate in such a system—a cornerstone protocol in quantum computing with single atoms. We focus on a blockade-type entangling gate and consider various decoherence processes limiting its performance in a real system. We provide numerical estimates for the limits on fidelity of the maximally entangled states and predict the full process matrix corresponding to the noisy two-qubit gate. We consider different excitation geometries and …


Ring Bose–Einstein Condensate Atomtronic Rotation Sensor, Oluwatobi I. Adeniji 2022 Georgia Southern University

Ring Bose–Einstein Condensate Atomtronic Rotation Sensor, Oluwatobi I. Adeniji

Electronic Theses and Dissertations

We propose a design for an atomtronic rotation sensor consisting of an array of Bose– Einstein condensates (BECs) confined in a double–target–array potential. The purpose of the sensor is to measure the rotation speed, ΩR, of the sensor’s rest frame with respect to the “fixed stars.” The atomtronic system consists of an ultracold gas of sodium atoms compressed, using laser light, into a thin horizontal sheet and subjected to a double–target– array potential within the horizontal plane. A “target” BEC consists of a disk–shaped condensate surrounded by a concentric ring–shaped condensate. A “double–target” BEC is two adjacent target …


Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier 2021 University of Innsbruck

Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier

Faculty Publications

In the present work we observe that helium nanodroplets colliding with surfaces can exhibit splashing in a way that is analogous to classical liquids. We use transmission electron microscopy and mass spectrometry to demonstrate that neutral and ionic dopants embedded in the droplets are efficiently backscattered in such events. High abundances of weakly bound He-tagged ions of both polarities indicate a gentle extraction mechanism of these ions from the droplets upon collision with a solid surface. This backscattering process is observed for dopant particles with masses up to 400 kilodaltons, indicating an unexpected mechanism that effectively lowers deposition rates of …


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman 2021 University of New Mexico - Main Campus

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Study Of The Geometric Structure Of Low-Atomic Copper Clusters Using Computer Simulation, Nodirbek Ikromjonovich Ibrokhimov 2021 Ferghana Polytechnic Institute

Study Of The Geometric Structure Of Low-Atomic Copper Clusters Using Computer Simulation, Nodirbek Ikromjonovich Ibrokhimov

Scientific-technical journal

In this work, we investigated the geometric structure of small neutral copper clusters with low energy using the MD (Molecular Dynamics) method. When calculating the processes of interatomic interaction, we used a potential EAM (Embedded-atom method). A computer model of Cun (n = 2-13) clusters has been created. The geometric shapes of the Cu2, Cu3, Cu4, Cu5, Cu6, Cu7, Cu8, Cu9, Cu10, Cu11, Cu12, and Cu13 clusters have been studied and the structural parameters (Cu-Cu bond …


Effects Of Anharmonicity In A Dual-Sagnac Interferometer, Stephen Thomas 2021 Georgia Southern University

Effects Of Anharmonicity In A Dual-Sagnac Interferometer, Stephen Thomas

Honors College Theses

A recent experiment implemented a dual Sagnac atom interferometer (AI) for rotation sensing using a Bose-Einstein condensate (BEC) confined in a TOP-trap potential. The BEC is split twice by laser light to create two pairs of counter-orbiting clouds in a lowest-order harmonic potential with each pair acting as a separate Sagnac interferometer. After one orbit the two overlapping cloud pairs are split again and the interference patterns are inferred from the population of atoms in the zero-momentum state. We have simulated the impact of the presence of anharmonic terms in the potential on the performance of the AI as measured …


Digital Commons powered by bepress