Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

2,038 Full-Text Articles 3,304 Authors 754,230 Downloads 166 Institutions

All Articles in Theory and Algorithms

Faceted Search

2,038 full-text articles. Page 1 of 85.

A Comparative Analysis Of Source Identification Algorithms, Pablo A. Curiel 2024 Virginia Commonwealth University

A Comparative Analysis Of Source Identification Algorithms, Pablo A. Curiel

Biology and Medicine Through Mathematics Conference

No abstract provided.


An Exploration Of Procedural Methods In Game Level Design, Hector Salinas 2024 University of Arkansas, Fayetteville

An Exploration Of Procedural Methods In Game Level Design, Hector Salinas

Computer Science and Computer Engineering Undergraduate Honors Theses

Video games offer players immersive experiences within intricately crafted worlds, and the integration of procedural methods in game level designs extends this potential by introducing dynamic, algorithmically generated content that could stand on par with handcrafted environments. This research highlights the potential to provide players with engaging experiences through procedural level generation, while potentially reducing development time for game developers.

Through a focused exploration on two-dimensional cave generation techniques, this paper aims to provide efficient solutions tailored to this specific environment. This exploration encompasses several procedural generation methods, including Midpoint Displacement, Random Walk, Cellular Automata, Perlin Worms, and Binary Space …


Side Channel Detection Of Pc Rootkits Using Nonlinear Phase Space, Rebecca Clark 2024 University of South Alabama

Side Channel Detection Of Pc Rootkits Using Nonlinear Phase Space, Rebecca Clark

Poster Presentations

Cyberattacks are increasing in size and scope yearly, and the most effective and common means of attack is through malicious software executed on target devices of interest. Malware threats vary widely in terms of behavior and impact and, thus, effective methods of detection are constantly being sought from the academic research community to offset both volume and complexity. Rootkits are malware that represent a highly feared threat because they can change operating system integrity and alter otherwise normally functioning software. Although normal methods of detection that are based on signatures of known malware code are the standard line of defense, …


An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. YU, Nabila Yuraisyah SALSABILA, Aldy GUNAWAN, Anggun Nurfitriani HANDOKO 2024 Singapore Management University

An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko

Research Collection School Of Computing and Information Systems

The home-refill delivery system is a business model that addresses the concerns of plastic waste and its impact on the environment. It allows customers to pick up their household goods at their doorsteps and refill them into their own containers. However, the difficulty in accessing customers’ locations and product consolidations are undeniable challenges. To overcome these issues, we introduce a new variant of the Profitable Tour Problem, named the multi-vehicle profitable tour problem with flexible compartments and mandatory customers (MVPTPFC-MC). The objective is to maximize the difference between the total collected profit and the traveling cost. We model the proposed …


Quantum Machine Learning For Credit Scoring, Nikolaos SCHETAKIS, Davit AGHAMALYAN, Micheael BOGUSLAVSKY, Agnieszka REES, Marc RAKOTOMALALA, Paul Robert GRIFFIN 2024 Technical University of Crete

Quantum Machine Learning For Credit Scoring, Nikolaos Schetakis, Davit Aghamalyan, Micheael Boguslavsky, Agnieszka Rees, Marc Rakotomalala, Paul Robert Griffin

Research Collection School Of Computing and Information Systems

This study investigates the integration of quantum circuits with classical neural networks for enhancing credit scoring for small- and medium-sized enterprises (SMEs). We introduce a hybrid quantum–classical model, focusing on the synergy between quantum and classical rather than comparing the performance of separate quantum and classical models. Our model incorporates a quantum layer into a traditional neural network, achieving notable reductions in training time. We apply this innovative framework to a binary classification task with a proprietary real-world classical credit default dataset for SMEs in Singapore. The results indicate that our hybrid model achieves efficient training, requiring significantly fewer epochs …


Techniques To Detect Fake Profiles On Social Media Using The New Age Algorithms – A Survey, A K M Rubaiyat Reza Habib, Edidiong Elijah Akpan 2024 Arkansas Tech University

Techniques To Detect Fake Profiles On Social Media Using The New Age Algorithms – A Survey, A K M Rubaiyat Reza Habib, Edidiong Elijah Akpan

ATU Research Symposium

This research explores the growing issue of fake accounts in Online Social Networks [OSNs]. While platforms like Twitter, Instagram, and Facebook foster connections, their lax authentication measures have attracted many scammers and cybercriminals. Fake profiles conduct malicious activities, such as phishing, spreading misinformation, and inciting social discord. The consequences range from cyberbullying to deceptive commercial practices. Detecting fake profiles manually is often challenging and causes considerable stress and trust issues for the users. Typically, a social media user scrutinizes various elements like the profile picture, bio, and shared posts to identify fake profiles. These evaluations sometimes lead users to conclude …


Rescape: Transforming Coral-Reefscape Images For Quantitative Analysis, Zachary Ferris, Eraldo Ribeiro, Tomofumi Nagata, Robert van Woesik 2024 Florida Institute of Technology

Rescape: Transforming Coral-Reefscape Images For Quantitative Analysis, Zachary Ferris, Eraldo Ribeiro, Tomofumi Nagata, Robert Van Woesik

Ocean Engineering and Marine Sciences Faculty Publications

Ever since the first image of a coral reef was captured in 1885, people worldwide have been accumulating images of coral reefscapes that document the historic conditions of reefs. However, these innumerable reefscape images suffer from perspective distortion, which reduces the apparent size of distant taxa, rendering the images unusable for quantitative analysis of reef conditions. Here we solve this century-long distortion problem by developing a novel computer-vision algorithm, ReScape, which removes the perspective distortion from reefscape images by transforming them into top-down views, making them usable for quantitative analysis of reef conditions. In doing so, we demonstrate the …


Predicting Biomolecular Properties And Interactions Using Numerical, Statistical And Machine Learning Methods, Elyssa Sliheet 2024 Southern Methodist University

Predicting Biomolecular Properties And Interactions Using Numerical, Statistical And Machine Learning Methods, Elyssa Sliheet

Mathematics Theses and Dissertations

We investigate machine learning and electrostatic methods to predict biophysical properties of proteins, such as solvation energy and protein ligand binding affinity, for the purpose of drug discovery/development. We focus on the Poisson-Boltzmann model and various high performance computing considerations such as parallelization schemes.


On Adaptivity And Randomness For Streaming Algorithms, Manuel Stoeckl 2024 Dartmouth College

On Adaptivity And Randomness For Streaming Algorithms, Manuel Stoeckl

Dartmouth College Ph.D Dissertations

A streaming algorithm has a limited amount of memory and reads a long sequence (data stream) of input elements, one by one, and computes an output depending on the input. Such algorithms may be used in an online fashion, producing a sequence of intermediate outputs corresponding to the prefixes of the data stream. Adversarially robust streaming algorithms are required to give correct outputs with a desired probability even when the data stream is adaptively generated by an adversary that can see all intermediate outputs of the algorithm. This thesis binds together research on a variety of problems related to the …


Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan LIN, Jing MA, Ruichao YANG, Zhiwei YANG, Mingfei CHENG 2024 Singapore Management University

Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng

Research Collection School Of Computing and Information Systems

The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a simple yet effective framework with unified contrastive transfer learning, to detect rumors by adapting the features learned from well-resourced rumor data to that …


Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami 2024 Old Dominion University

Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami

Undergraduate Research Symposium

Students in juvenile detention centers have the greatest need to receive improvements in educational delivery and content; however, they are one of the “truly disadvantaged” populations in terms of receiving those improvements. This work presents a qualitative data analysis based on a focus group meeting with stakeholders at a local Juvenile Detention Center. The current educational system in juvenile detention centers is based on paper worksheets, single-room style teaching methods, outdated technology, and a shortage of textbooks and teachers. In addition, detained students typically have behavioral challenges that are deemed "undesired" in society. As a result, many students miss classes …


Automated Identification And Mapping Of Interesting Mineral Spectra In Crism Images, Arun M. Saranathan 2024 University of Massachusetts Amherst

Automated Identification And Mapping Of Interesting Mineral Spectra In Crism Images, Arun M. Saranathan

Doctoral Dissertations

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has proven to be an invaluable tool for the mineralogical analysis of the Martian surface. It has been crucial in identifying and mapping the spatial extents of various minerals. Primarily, the identification and mapping of these mineral spectral-shapes have been performed manually. Given the size of the CRISM image dataset, manual analysis of the full dataset would be arduous/infeasible. This dissertation attempts to address this issue by describing an (machine learning based) automated processing pipeline for CRISM data that can be used to identify and map the unique mineral signatures present in …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin 2024 The University of Texas Rio Grande Valley

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


The Impact Of Data Preparation And Model Complexity On The Natural Language Classification Of Chinese News Headlines, Torrey J. Wagner, Dennis Guhl, Brent T. Langhals 2024 Air Force Institute of Technology

The Impact Of Data Preparation And Model Complexity On The Natural Language Classification Of Chinese News Headlines, Torrey J. Wagner, Dennis Guhl, Brent T. Langhals

Faculty Publications

Given the emergence of China as a political and economic power in the 21st century, there is increased interest in analyzing Chinese news articles to better understand developing trends in China. Because of the volume of the material, automating the categorization of Chinese-language news articles by headline text or titles can be an effective way to sort the articles into categories for efficient review. A 383,000-headline dataset labeled with 15 categories from the Toutiao website was evaluated via natural language processing to predict topic categories. The influence of six data preparation variations on the predictive accuracy of four algorithms was …


Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer 2024 Olivet Nazarene University

Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer

ELAIA

Asteroid detection is a common field in astronomy for planetary defense, requiring observations from survey telescopes to detect and classify different objects. The amount of data collected each night is continually increasing as new and better-designed telescopes begin collecting information each year. This amount of data is quickly becoming unmanageable, and researchers are looking for ways to better process this data. The most feasible current solution is to implement computer algorithms to automatically detect these sources and then use machine learning to create a more efficient and accurate method of classification. Implementation of such methods has previously focused on larger …


Wang Tilings In Arbitrary Dimensions, Ian Tassin 2024 Oregon State University

Wang Tilings In Arbitrary Dimensions, Ian Tassin

Rose-Hulman Undergraduate Mathematics Journal

This paper makes a new observation about arbitrary dimensional Wang Tilings,
demonstrating that any d -dimensional tile set that can tile periodically along d − 1 axes must be able to tile periodically along all axes.
This work also summarizes work on Wang Tiles up to the present day, including
definitions for various aspects of Wang Tilings such as periodicity and the validity of a tiling. Additionally, we extend the familiar 2D definitions for Wang Tiles and associated properties into arbitrary dimensional spaces. While there has been previous discussion of arbitrary dimensional Wang Tiles in other works, it has been …


Online Class-Incremental Learning For Real-World Food Image Classification, Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu 2024 Purdue University

Online Class-Incremental Learning For Real-World Food Image Classification, Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu

Graduate Industrial Research Symposium

Food image classification is essential for monitoring health and tracking dietary in image-based dietary assessment methods. However, conventional systems often rely on static datasets with fixed classes and uniform distribution. In contrast, real-world food consumption patterns, shaped by cultural, economic, and personal influences, involve dynamic and evolving data. Thus, it requires the classification system to cope with continuously evolving data. Online Class Incremental Learning (OCIL) addresses the challenge of learning continuously from a single-pass data stream while adapting to the new knowledge and reducing catastrophic forgetting. Experience Replay (ER) based OCIL methods store a small portion of previous data and …


A Machine Learning Model Of Perturb-Seq Data For Use In Space Flight Gene Expression Profile Analysis, Liam F. Johnson, James Casaletto, Lauren Sanders, Sylvain Costes 2024 Purdue University

A Machine Learning Model Of Perturb-Seq Data For Use In Space Flight Gene Expression Profile Analysis, Liam F. Johnson, James Casaletto, Lauren Sanders, Sylvain Costes

Graduate Industrial Research Symposium

The genetic perturbations caused by spaceflight on biological systems tend to have a system-wide effect which is often difficult to deconvolute it into individual signals with specific points of origin. Single cell multi-omic data can provide a profile of the perturbational effects, but does not necessarily indicate the initial point of interference within the network. The objective of this project is to take advantage of large scale and genome-wide perturbational datasets by using them to train a tuned machine learning model that is capable of predicting the effects of unseen perturbations in new data. Perturb-Seq datasets are large libraries of …


Sepsis Treatment: Reinforced Sequential Decision-Making For Saving Lives, Dipesh Tamboli, Jiayu Chen, Kiran Pranesh Jotheeswaran, Denny Yu, Vaneet Aggarwal 2024 Purdue University

Sepsis Treatment: Reinforced Sequential Decision-Making For Saving Lives, Dipesh Tamboli, Jiayu Chen, Kiran Pranesh Jotheeswaran, Denny Yu, Vaneet Aggarwal

Graduate Industrial Research Symposium

Sepsis, a life-threatening condition triggered by the body's exaggerated response to infection, demands urgent intervention to prevent severe complications. Existing machine learning methods for managing sepsis struggle in offline scenarios, exhibiting suboptimal performance with survival rates below 50%. Our project introduces the "PosNegDM: Reinforcement Learning with Positive and Negative Demonstrations for Sequential Decision-Making" framework utilizing an innovative transformer-based model and a feedback reinforcer to replicate expert actions while considering individual patient characteristics. A mortality classifier with 96.7% accuracy guides treatment decisions towards positive outcomes. The PosNegDM framework significantly improves patient survival, saving 97.39% of patients and outperforming established machine learning …


Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen YUAN, Heyan HUANG, Yixin CAO, Qianwen CAO 2024 Singapore Management University

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao

Research Collection School Of Computing and Information Systems

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one hand, different from previous works, which carefully insert one token between two words per action, we insert …


Digital Commons powered by bepress