Time Evolution Is A Source Of Bias In The Wolf Algorithm For Largest Lyapunov Exponents,
2023
University of Nebraska at Omaha
Time Evolution Is A Source Of Bias In The Wolf Algorithm For Largest Lyapunov Exponents, Kolby Brink, Tyler Wiles, Nicholas Stergiou, Aaron Likens
UNO Student Research and Creative Activity Fair
Human movement is inherently variable by nature. One of the most common analytical tools for assessing movement variability is the largest Lyapunov exponent (LyE) which quantifies the rate of trajectory divergence or convergence in an n-dimensional state space. One popular method for assessing LyE is the Wolf algorithm. Many studies have investigated how Wolf’s calculation of the LyE changes due to sampling frequency, filtering, data normalization, and stride normalization. However, a surprisingly understudied parameter needed for LyE computation is evolution time. The purpose of this study is to investigate how the LyE changes as a function of evolution time …
Fraud Pattern Detection For Nft Markets,
2023
Southern Methodist University
Fraud Pattern Detection For Nft Markets, Andrew Leppla, Jorge Olmos, Jaideep Lamba
SMU Data Science Review
Non-Fungible Tokens (NFTs) enable ownership and transfer of digital assets using blockchain technology. As a relatively new financial asset class, NFTs lack robust oversight and regulations. These conditions create an environment that is susceptible to fraudulent activity and market manipulation schemes. This study examines the buyer-seller network transactional data from some of the most popular NFT marketplaces (e.g., AtomicHub, OpenSea) to identify and predict fraudulent activity. To accomplish this goal multiple features such as price, volume, and network metrics were extracted from NFT transactional data. These were fed into a Multiple-Scale Convolutional Neural Network that predicts suspected fraudulent activity based …
Self-Learning Algorithms For Intrusion Detection And Prevention Systems (Idps),
2023
Southern Methodist University
Self-Learning Algorithms For Intrusion Detection And Prevention Systems (Idps), Juan E. Nunez, Roger W. Tchegui Donfack, Rohit Rohit, Hayley Horn
SMU Data Science Review
Today, there is an increased risk to data privacy and information security due to cyberattacks that compromise data reliability and accessibility. New machine learning models are needed to detect and prevent these cyberattacks. One application of these models is cybersecurity threat detection and prevention systems that can create a baseline of a network's traffic patterns to detect anomalies without needing pre-labeled data; thus, enabling the identification of abnormal network events as threats. This research explored algorithms that can help automate anomaly detection on an enterprise network using Canadian Institute for Cybersecurity data. This study demonstrates that Neural Networks with Bayesian …
A Modified Hopfield Network For The K-Median Problem,
2023
The University of Western Ontario
A Modified Hopfield Network For The K-Median Problem, Cody Rossiter
Electronic Thesis and Dissertation Repository
The k-median problem is a clustering problem where given n locations one wants to select k locations such that the total distance between every non-selected location and its nearest selected location is minimized. The problem has applications in several fields, including network design, resource allocation, and data mining.
There is currently limited research on applying neural networks to combinatorial optimization problems and we contribute by presenting a modified Hopfield network for the k-median problem. Hopfield networks are a type of neural network that can be applied to combinatorial optimization problems but often run slowly and produce poor solutions.
Our modifications …
Session11: Skip-Gcn : A Framework For Hierarchical Graph Representation Learning,
2023
SDSMT
Session11: Skip-Gcn : A Framework For Hierarchical Graph Representation Learning, Jackson Cates, Justin Lewis, Randy Hoover, Kyle Caudle
SDSU Data Science Symposium
Recently there has been high demand for the representation learning of graphs. Graphs are a complex data structure that contains both topology and features. There are first several domains for graphs, such as infectious disease contact tracing and social media network communications interactions. The literature describes several methods developed that work to represent nodes in an embedding space, allowing for classical techniques to perform node classification and prediction. One such method is the graph convolutional neural network that aggregates the node neighbor’s features to create the embedding. Another method, Walklets, takes advantage of the topological information stored in a graph …
Regulating Machine Learning: The Challenge Of Heterogeneity,
2023
University of Pennsylvania Carey Law School
Regulating Machine Learning: The Challenge Of Heterogeneity, Cary Coglianese
Faculty Scholarship at Penn Carey Law
Machine learning, or artificial intelligence, refers to a vast array of different algorithms that are being put to highly varied uses, including in transportation, medicine, social media, marketing, and many other settings. Not only do machine-learning algorithms vary widely across their types and uses, but they are evolving constantly. Even the same algorithm can perform quite differently over time as it is fed new data. Due to the staggering heterogeneity of these algorithms, multiple regulatory agencies will be needed to regulate the use of machine learning, each within their own discrete area of specialization. Even these specialized expert agencies, though, …
Combinatorics Syllabus,
2023
City University of New York (CUNY)
Combinatorics Syllabus, Tugce Ozdemir
Open Educational Resources
No abstract provided.
Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback,
2023
Argonne National Laboratory
Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan
Publications
In this article, we address two key challenges in deep reinforcement learning (DRL) setting, sample inefficiency, and slow learning, with a dual-neural network (NN)-driven learning approach. In the proposed approach, we use two deep NNs with independent initialization to robustly approximate the action-value function in the presence of image inputs. In particular, we develop a temporal difference (TD) error-driven learning (EDL) approach, where we introduce a set of linear transformations of the TD error to directly update the parameters of each layer in the deep NN. We demonstrate theoretically that the cost minimized by the EDL regime is an approximation …
Small Approximate Pareto Sets With Quality Bounds,
2023
University of Kentucky
Small Approximate Pareto Sets With Quality Bounds, William Bailey
Theses and Dissertations--Computer Science
We present and empirically characterize a general, parallel, heuristic algorithm for computing small ε-Pareto sets. The algorithm can be used as part of a decision support tool for settings in which computing points in objective space is computationally expensive. We use the graph clearing problem, a formalization of indirect organ exchange markets, as a prototypical example setting. We characterize the performance of the algorithm through ε-Pareto set size, ε value provided, and parallel speedup achieved. Our results show that the algorithm's combination of parallel speedup and small ε-Pareto sets is sufficient to be appealing in settings requiring manual review (i.e., …
Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations,
2023
Naval Surface Warfare Center
Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal
Mechanical & Aerospace Engineering Faculty Publications
This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …
Dynamic Function Learning Through Control Of Ensemble Systems,
2023
Washington University in St. Louis
Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li
Publications
Learning tasks involving function approximation are preva- lent in numerous domains of science and engineering. The underlying idea is to design a learning algorithm that gener- ates a sequence of functions converging to the desired target function with arbitrary accuracy by using the available data samples. In this paper, we present a novel interpretation of iterative function learning through the lens of ensemble dy- namical systems, with an emphasis on establishing the equiv- alence between convergence of function learning algorithms and asymptotic behavior of ensemble systems. In particular, given a set of observation data in a function learning task, we …
Survey On Sentiment Analysis: Evolution Of Research Methods And Topics,
2023
Singapore Management University
Survey On Sentiment Analysis: Evolution Of Research Methods And Topics, Jingfeng Cui, Zhaoxia Wang, Seng-Beng Ho, Erik Cambria
Research Collection School Of Computing and Information Systems
Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates …
Crosshair Optimizer,
2023
Central Washington University
Crosshair Optimizer, Jason Torrence
All Master's Theses
Metaheuristic optimization algorithms are heuristics that are capable of creating a "good enough'' solution to a computationally complex problem. Algorithms in this area of study are focused on the process of exploration and exploitation: exploration of the solution space and exploitation of the results that have been found during that exploration, with most resources going toward the former half of the process. The novel Crosshair optimizer developed in this thesis seeks to take advantage of the latter, exploiting the best possible result as much as possible by directly searching the area around that best result with a stochastic approach. This …
Advances In The Automatic Detection Of Optimization Opportunities In Computer Programs,
2022
The University of Western Ontario
Advances In The Automatic Detection Of Optimization Opportunities In Computer Programs, Delaram Talaashrafi
Electronic Thesis and Dissertation Repository
Massively parallel and heterogeneous systems together with their APIs have been used for various applications. To achieve high-performance software, the programmer should develop optimized algorithms to maximize the system’s resource utilization. However, designing such algorithms is challenging and time-consuming. Therefore, optimizing compilers are developed to take part in the programmer’s optimization burden. Developing effective optimizing compilers is an active area of research. Specifically, because loop nests are usually the hot spots in a program, their optimization has been the main subject of many optimization algorithms. This thesis aims to improve the scope and applicability of performance optimization algorithms used in …
Context-Aware Collaborative Neuro-Symbolic Inference In Internet Of Battlefield Things,
2022
Army Cyber Institute, U.S. Military Academy
Context-Aware Collaborative Neuro-Symbolic Inference In Internet Of Battlefield Things, Tarek Abdelzaher, Nathaniel D. Bastian, Susmit Jha, Lance Kaplan, Mani Srivastava, Venugopal Veeravalli
ACI Journal Articles
IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features …
Improving Adjacency List Storage Methods For Polypeptide Similarity Analysis,
2022
University of Mississippi
Improving Adjacency List Storage Methods For Polypeptide Similarity Analysis, Arianna Swensen
Honors Theses
Protein design is a complex biomolecular and computational problem. Working on increasingly large protein folding problems requires an improvement in current analysis methods available. This work first discusses various methods of protein design, including de novo protein design, which is the primary focus of this thesis. Then, a new approach utilizing a B+ tree to effectively store and query a graph of keys and vertices is proposed in order to store the number of times two polypeptides are considered to be similar. This approach is found to have a reduction in time complexity from current mapping methods and thus provides …
Obstacles In Learning Algorithm Run-Time Complexity Analysis,
2022
University of Nebraska at Omaha
Obstacles In Learning Algorithm Run-Time Complexity Analysis, Bailey Licht
Theses/Capstones/Creative Projects
Algorithm run-time complexity analysis is an important topic in data structures and algorithms courses, but it is also a topic that many students struggle with. Commonly cited difficulties include the necessary mathematical background knowledge, the abstract nature of the topic, and the presentation style of the material. Analyzing the subject of algorithm analysis using multiple learning theories shows that course materials often leave out key steps in the learning process and neglect certain learning styles. Students can be more successful at learning algorithm run-time complexity analysis if these missing stages and learning styles are addressed.
An Efficient Annealing-Assisted Differential Evolution For Multi-Parameter Adaptive Latent Factor Analysis,
2022
Chongqing University of Post and Telecommunications
An Efficient Annealing-Assisted Differential Evolution For Multi-Parameter Adaptive Latent Factor Analysis, Qing Li, Guansong Pang, Mingsheng Shang
Research Collection School Of Computing and Information Systems
A high-dimensional and incomplete (HDI) matrix is a typical representation of big data. However, advanced HDI data analysis models tend to have many extra parameters. Manual tuning of these parameters, generally adopting the empirical knowledge, unavoidably leads to additional overhead. Although variable adaptive mechanisms have been proposed, they cannot balance the exploration and exploitation with early convergence. Moreover, learning such multi-parameters brings high computational time, thereby suffering gross accuracy especially when solving a bilinear problem like conducting the commonly used latent factor analysis (LFA) on an HDI matrix. Herein, an efficient annealing-assisted differential evolution for multi-parameter adaptive latent factor analysis …
Three Contributions To The Theory And Practice Of Optimizing Compilers,
2022
The University of Western Ontario
Three Contributions To The Theory And Practice Of Optimizing Compilers, Linxiao Wang
Electronic Thesis and Dissertation Repository
The theory and practice of optimizing compilers gather techniques that, from input computer programs, aim at generating code making the best use of modern computer hardware. On the theory side, this thesis contributes new results and algorithms in polyhedral geometry. On the practical side, this thesis contributes techniques for the tuning of parameters of programs targeting GPUs. We detailed these two fronts of our work below.
Consider a convex polyhedral set P given by a system of linear inequalities A*x <= b, where A is an integer matrix and b is an integer vector. We are interested in the integer hull PI of P which is the smallest convex polyhedral set that contains all the integer points in P. In Chapter …=>
Morphologically-Aware Vocabulary Reduction Of Word Embeddings,
2022
Singapore Management University
Morphologically-Aware Vocabulary Reduction Of Word Embeddings, Chong Cher Chia, Maksim Tkachenko, Hady Wirawan Lauw
Research Collection School Of Computing and Information Systems
We propose SubText, a compression mechanism via vocabulary reduction. The crux is to judiciously select a subset of word embeddings which support the reconstruction of the remaining word embeddings based on their form alone. The proposed algorithm considers the preservation of the original embeddings, as well as a word’s relationship to other words that are morphologically or semantically similar. Comprehensive evaluation of the compressed vocabulary reveals SubText’s efficacy on diverse tasks over traditional vocabulary reduction techniques, as validated on English, as well as a collection of inflected languages.