Open Access. Powered by Scholars. Published by Universities.®

OS and Networks Commons

Open Access. Powered by Scholars. Published by Universities.®

1,588 Full-Text Articles 2,154 Authors 694,641 Downloads 103 Institutions

All Articles in OS and Networks

Faceted Search

1,588 full-text articles. Page 1 of 51.

Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing YANG, Chen ZHANG, Baihua ZHENG 2022 Singapore Management University

Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing Yang, Chen Zhang, Baihua Zheng

Research Collection School Of Computing and Information Systems

Time-varying dynamic Bayesian network (TVDBN) is essential for describing time-evolving directed conditional dependence structures in complex multivariate systems. In this article, we construct a TVDBN model, together with a score-based method for its structure learning. The model adopts a vector autoregressive (VAR) model to describe inter-slice and intra-slice relations between variables. By allowing VAR parameters to change segment-wisely over time, the time-varying dynamics of the network structure can be described. Furthermore, considering some external information can provide additional similarity information of variables. Graph Laplacian is further imposed to regularize similar nodes to have similar network structures. The regularized maximum a ...


Which Neural Network Makes More Explainable Decisions? An Approach Towards Measuring Explainability, Mengdi ZHANG, Jun SUN, Jingyi WANG 2022 Singapore Management University

Which Neural Network Makes More Explainable Decisions? An Approach Towards Measuring Explainability, Mengdi Zhang, Jun Sun, Jingyi Wang

Research Collection School Of Computing and Information Systems

Neural networks are getting increasingly popular thanks to their exceptional performance in solving many real-world problems. At the same time, they are shown to be vulnerable to attacks, difficult to debug and subject to fairness issues. To improve people’s trust in the technology, it is often necessary to provide some human-understandable explanation of neural networks’ decisions, e.g., why is that my loan application is rejected whereas hers is approved? That is, the stakeholder would be interested to minimize the chances of not being able to explain the decision consistently and would like to know how often and how ...


Qvip: An Ilp-Based Formal Verification Approach For Quantized Neural Networks, Yedi ZHANG, Zhe ZHAO, Guangke CHEN, Fu SONG, Min ZHANG, Taolue CHEN, Jun SUN 2022 Singapore Management University

Qvip: An Ilp-Based Formal Verification Approach For Quantized Neural Networks, Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, Jun Sun

Research Collection School Of Computing and Information Systems

Deep learning has become a promising programming paradigm in software development, owing to its surprising performance in solving many challenging tasks. Deep neural networks (DNNs) are increasingly being deployed in practice, but are limited on resource-constrained devices owing to their demand for computational power. Quantization has emerged as a promising technique to reduce the size of DNNs with comparable accuracy as their floating-point numbered counterparts. The resulting quantized neural networks (QNNs) can be implemented energy-efficiently. Similar to their floating-point numbered counterparts, quality assurance techniques for QNNs, such as testing and formal verification, are essential but are currently less explored. In ...


Explanation Guided Contrastive Learning For Sequential Recommendation, Lei WANG, Ee-peng LIM, Zhiwei LIU, Tianxiang ZHAO 2022 Singapore Management University

Explanation Guided Contrastive Learning For Sequential Recommendation, Lei Wang, Ee-Peng Lim, Zhiwei Liu, Tianxiang Zhao

Research Collection Lee Kong Chian School Of Business

Recently, contrastive learning has been applied to the sequential recommendation task to address data sparsity caused by users with few item interactions and items with few user adoptions. Nevertheless, the existing contrastive learning-based methods fail to ensure that the positive (or negative) sequence obtained by some random augmentation (or sequence sampling) on a given anchor user sequence remains to be semantically similar (or different). When the positive and negative sequences turn out to be false positive and false negative respectively, it may lead to degraded recommendation performance. In this work, we address the above problem by proposing Explanation Guided Augmentations ...


Stitching Weight-Shared Deep Neural Networks For Efficient Multitask Inference On Gpu, Zeyu WANG, Xiaoxi HE, Zimu ZHOU, Xu WANG, Qiang MA, Xin MIAO, Zhuo LIU, Lothar THIELE, Zheng. YANG 2022 Singapore Management University

Stitching Weight-Shared Deep Neural Networks For Efficient Multitask Inference On Gpu, Zeyu Wang, Xiaoxi He, Zimu Zhou, Xu Wang, Qiang Ma, Xin Miao, Zhuo Liu, Lothar Thiele, Zheng. Yang

Research Collection School Of Computing and Information Systems

Intelligent personal and home applications demand multiple deep neural networks (DNNs) running on resourceconstrained platforms for compound inference tasks, known as multitask inference. To fit multiple DNNs into low-resource devices, emerging techniques resort to weight sharing among DNNs to reduce their storage. However, such reduction in storage fails to translate into efficient execution on common accelerators such as GPUs. Most DNN graph rewriters are blind for multiDNN optimization, while GPU vendors provide inefficient APIs for parallel multi-DNN execution at runtime. A few prior graph rewriters suggest cross-model graph fusion for low-latency multiDNN execution. Yet they request duplication of the shared ...


Exploring Artificial Intelligence (Ai) Techniques For Forecasting Network Traffic: Network Qos And Security Perspectives, Ibrahim Mohammed Sayem 2022 The University of Western Ontario

Exploring Artificial Intelligence (Ai) Techniques For Forecasting Network Traffic: Network Qos And Security Perspectives, Ibrahim Mohammed Sayem

Electronic Thesis and Dissertation Repository

This thesis identifies the research gaps in the field of network intrusion detection and network QoS prediction, and proposes novel solutions to address these challenges. Our first topic presents a novel network intrusion detection system using a stacking ensemble technique using UNSW-15 and CICIDS-2017 datasets. In contrast to earlier research, our proposed novel network intrusion detection techniques not only determine if the network traffic is benign or normal, but also reveal the type of assault in the flow. Our proposed stacking ensemble model provides a more effective detection capability than the existing works. Our proposed stacking ensemble technique can detect ...


Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt 2022 East Tennessee State University

Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt

Electronic Theses and Dissertations

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air ...


Verifying Neural Networks Against Backdoor Attacks, Pham Hong LONG, Jun SUN 2022 Singapore Management University

Verifying Neural Networks Against Backdoor Attacks, Pham Hong Long, Jun Sun

Research Collection School Of Computing and Information Systems

Neural networks have achieved state-of-the-art performance in solving many problems, including many applications in safety/security-critical systems. Researchers also discovered multiple security issues associated with neural networks. One of them is backdoor attacks, i.e., a neural network may be embedded with a backdoor such that a target output is almost always generated in the presence of a trigger. Existing defense approaches mostly focus on detecting whether a neural network is ‘backdoored’ based on heuristics, e.g., activation patterns. To the best of our knowledge, the only line of work which certifies the absence of backdoor is based on randomized ...


Holistic Performance Analysis And Optimization Of Unified Virtual Memory, Tyler Allen 2022 Clemson University

Holistic Performance Analysis And Optimization Of Unified Virtual Memory, Tyler Allen

All Dissertations

The programming difficulty of creating GPU-accelerated high performance computing (HPC) codes has been greatly reduced by the advent of Unified Memory technologies that abstract the management of physical memory away from the developer. However, these systems incur substantial overhead that paradoxically grows for codes where these technologies are most useful. While these technologies are increasingly adopted for use in modern HPC frameworks and applications, the performance cost reduces the efficiency of these systems and turns away some developers from adoption entirely. These systems are naturally difficult to optimize due to the large number of interconnected hardware and software components that ...


Self-Checking Deep Neural Networks For Anomalies And Adversaries In Deployment, Yan XIAO, Ivan BESCHASTNIKH, Yun LIN, Rajdeep Singh HUNDAL, Xiaofei XIE, David S. ROSENBLUM, Jin Song DONG 2022 Singapore Management University

Self-Checking Deep Neural Networks For Anomalies And Adversaries In Deployment, Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S. Rosenblum, Jin Song Dong

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely adopted, yet DNN models are surprisingly unreliable, which raises significant concerns about their use in critical domains. In this work, we propose that runtime DNN mistakes can be quickly detected and properly dealt with in deployment, especially in settings like self-driving vehicles. Just as software engineering (SE) community has developed effective mechanisms and techniques to monitor and check programmed components, our previous work, SelfChecker, is designed to monitor and correct DNN predictions given unintended abnormal test data. SelfChecker triggers an alarm if the decisions given by the internal layer features of the model ...


Developing Intelligent Routing Algorithm Over Sdn: Reusable Reinforcement Learning Approach, Wumian Wang 2022 The University of Western Ontario

Developing Intelligent Routing Algorithm Over Sdn: Reusable Reinforcement Learning Approach, Wumian Wang

Electronic Thesis and Dissertation Repository

Traffic routing is vital for the proper functioning of the Internet. As users and network traffic increase, researchers try to develop adaptive and intelligent routing algorithms that can fulfill various QoS requirements. Reinforcement Learning (RL) based routing algorithms have shown better performance than traditional approaches. We developed a QoS-aware, reusable RL routing algorithm, RLSR-Routing over SDN. During the learning process, our algorithm ensures loop-free path exploration. While finding the path for one traffic demand (a source destination pair with certain amount of traffic), RLSR-Routing learns the overall network QoS status, which can be used to speed up algorithm convergence when ...


Are You Really Muted?: A Privacy Analysis Of Mute Buttons In Video Conferencing Apps, Yucheng Yang, Jack West, George K. Thiruvathukal, Neil Klingensmith, Kassem Fawaz 2022 University of Wisconsin - Madison

Are You Really Muted?: A Privacy Analysis Of Mute Buttons In Video Conferencing Apps, Yucheng Yang, Jack West, George K. Thiruvathukal, Neil Klingensmith, Kassem Fawaz

Computer Science: Faculty Publications and Other Works

In the post-pandemic era, video conferencing apps (VCAs) have converted previously private spaces — bedrooms, living rooms, and kitchens — into semi-public extensions of the office. And for the most part, users have accepted these apps in their personal space, without much thought about the permission models that govern the use of their personal data during meetings. While access to a device’s video camera is carefully controlled, little has been done to ensure the same level of privacy for accessing the microphone. In this work, we ask the question: what happens to the microphone data when a user clicks the mute ...


Npc: Neuron Path Coverage Via Characterizing Decision Logic Of Deep Neural Networks, Xiaofei XIE, Tianlin LI, Jian WANG, Lei MA, Qing GUO, Felix JUEFEI-XU, Yang LIU 2022 Singapore Management University

Npc: Neuron Path Coverage Via Characterizing Decision Logic Of Deep Neural Networks, Xiaofei Xie, Tianlin Li, Jian Wang, Lei Ma, Qing Guo, Felix Juefei-Xu, Yang Liu

Research Collection School Of Computing and Information Systems

Deep learning has recently been widely applied to many applications across different domains, e.g., image classification and audio recognition. However, the quality of Deep Neural Networks (DNNs) still raises concerns in the practical operational environment, which calls for systematic testing, especially in safety-critical scenarios. Inspired by software testing, a number of structural coverage criteria are designed and proposed to measure the test adequacy of DNNs. However, due to the blackbox nature of DNN, the existing structural coverage criteria are difficult to interpret, making it hard to understand the underlying principles of these criteria. The relationship between the structural coverage ...


A3gan: Attribute-Aware Anonymization Networks For Face De-Identification, Liming ZHAI, Qing GUO, Xiaofei XIE, Lei MA, Yi Estelle WANG, Yang LIU 2022 Singapore Management University

A3gan: Attribute-Aware Anonymization Networks For Face De-Identification, Liming Zhai, Qing Guo, Xiaofei Xie, Lei Ma, Yi Estelle Wang, Yang Liu

Research Collection School Of Computing and Information Systems

Face de-identification (De-ID) removes face identity information in face images to avoid personal privacy leakage. Existing face De-ID breaks the raw identity by cutting out the face regions and recovering the corrupted regions via deep generators, which inevitably affect the generation quality and cannot control generation results according to subsequent intelligent tasks (e.g., facial expression recognition). In this work, for the first attempt, we think the face De-ID from the perspective of attribute editing and propose an attribute-aware anonymization network (A3GAN) by formulating face De-ID as a joint task of semantic suppression and controllable attribute injection. Intuitively, the semantic ...


Enhancing Security Patch Identification By Capturing Structures In Commits, Bozhi WU, Shangqing LIU, Ruitao FENG, Xiaofei XIE, Jingkai SIOW, Shang-Wei LIN 2022 Singapore Management University

Enhancing Security Patch Identification By Capturing Structures In Commits, Bozhi Wu, Shangqing Liu, Ruitao Feng, Xiaofei Xie, Jingkai Siow, Shang-Wei Lin

Research Collection School Of Computing and Information Systems

With the rapid increasing number of open source software (OSS), the majority of the software vulnerabilities in the open source components are fixed silently, which leads to the deployed software that integrated them being unable to get a timely update. Hence, it is critical to design a security patch identification system to ensure the security of the utilized software. However, most of the existing works for security patch identification just consider the changed code and the commit message of a commit as a flat sequence of tokens with simple neural networks to learn its semantics, while the structure information is ...


Data-Driven Retail Decision-Making Using Spatial Partitioning And Delineation Of Communities, Ming Hui TAN, Kar Way TAN 2022 Singapore Management University

Data-Driven Retail Decision-Making Using Spatial Partitioning And Delineation Of Communities, Ming Hui Tan, Kar Way Tan

Research Collection School Of Computing and Information Systems

Urbanisation is resulting in rapid growth in road networks within cities. The evolution of road networks can be indicative of a city's economic growth and it is a field of research gaining prominence in recent years. This paper proposes a framework for spatial partition of large scale road networks that produces appropriately sized geospatial units in order to identify the type of community they serve. To this end, we have developed a three-stage procedure which first partitions the road network using Louvain method, followed by outlining the boundary of each partition using Uber H3 grids before classifying each partition ...


Hakg: Hierarchy-Aware Knowledge Gated Network For Recommendation, Yuntao DU, Xinjun ZHU, Lu CHEN, Baihua ZHENG, Yunjun GAO 2022 Singapore Management University

Hakg: Hierarchy-Aware Knowledge Gated Network For Recommendation, Yuntao Du, Xinjun Zhu, Lu Chen, Baihua Zheng, Yunjun Gao

Research Collection School Of Computing and Information Systems

Knowledge graph (KG) plays an increasingly important role to improve the recommendation performance and interpretability. A recent technical trend is to design end-to-end models based on information propagation mechanism. However, existing propagationbased methods fail to (1) model the underlying hierarchical structures and relations, and (2) capture the high-order collaborative signals of items for learning high-quality user and item representations. In this paper, we propose a new model, called Hierarchy-Aware Knowledge Gated Network (HAKG), to tackle the aforementioned problems. Technically, we model users and items (that are captured by a user-item graph), as well as entities and relations (that are captured ...


Measuring Network Interference And Mitigating It With Dns Encryption, Seyed Arian Akhavan Niaki 2022 University of Massachusetts Amherst

Measuring Network Interference And Mitigating It With Dns Encryption, Seyed Arian Akhavan Niaki

Doctoral Dissertations

The Internet has emerged as one of the most important tools of communication. With around 4.5 billion active users as of July 2020, it provides people the opportunity to access a vast treasure trove of information and express their opinions online. How- ever, some countries consider the Internet as a critical communication medium and attempt to deploy network interference strategies. National governments, in particular, are notorious for their attempts to impose restrictions on online communication. Further, certain Internet service providers (ISPs) have been known to throttle specific applications and violate net neutrality principles.

Alongside the proliferation of network interference ...


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg 2022 California Polytechnic State University, San Luis Obispo

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Torsh: Obfuscating Consumer Internet-Of-Things Traffic With A Collaborative Smart-Home Router Network, Adam Vandenbussche 2022 Dartmouth College

Torsh: Obfuscating Consumer Internet-Of-Things Traffic With A Collaborative Smart-Home Router Network, Adam Vandenbussche

Dartmouth College Undergraduate Theses

When consumers install Internet-connected "smart devices" in their homes, metadata arising from the communications between these devices and their cloud-based service providers enables adversaries privy to this traffic to profile users, even when adequate encryption is used. Internet service providers (ISPs) are one potential adversary privy to users’ incom- ing and outgoing Internet traffic and either currently use this insight to assemble and sell consumer advertising profiles or may in the future do so. With existing defenses against such profiling falling short of meeting user preferences and abilities, there is a need for a novel solution that empowers consumers to ...


Digital Commons powered by bepress