Open Access. Powered by Scholars. Published by Universities.®

Databases and Information Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

6,592 Full-Text Articles 8,915 Authors 3,346,977 Downloads 209 Institutions

All Articles in Databases and Information Systems

Faceted Search

6,592 full-text articles. Page 1 of 249.

Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi WIN MYINT, Siaw Ling LO, Yuhao ZHANG 2024 Singapore Management University

Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang

Research Collection School Of Computing and Information Systems

In the age of rapid internet expansion, social media platforms like Twitter have become crucial for sharing information, expressing emotions, and revealing intentions during crisis situations. They offer crisis responders a means to assess public sentiment, attitudes, intentions, and emotional shifts by monitoring crisis-related tweets. To enhance sentiment and emotion classification, we adopt a transformer-based multi-task learning (MTL) approach with attention mechanism, enabling simultaneous handling of both tasks, and capitalizing on task interdependencies. Incorporating attention mechanism allows the model to concentrate on important words that strongly convey sentiment and emotion. We compare three baseline models, and our findings show that …


The Institutional Challenges Of A Quantified Self Study An Attempt To Ascertain How Data Collected From A Mobile Device Can Be An Indicator Of Personal Mental Health Over Time., Julian E. Lazaras 2024 Portland State University

The Institutional Challenges Of A Quantified Self Study An Attempt To Ascertain How Data Collected From A Mobile Device Can Be An Indicator Of Personal Mental Health Over Time., Julian E. Lazaras

University Honors Theses

The adoption of an application of new technology always comes with a bias, this is never more true for the case of human behavioral analytics within higher education. While movements such as the quantified self movement make strides to reinterpret the realm of data analytics, psychology, and computer science, there are inevitably limitations to the adoption and application of such approaches within the standard realm of research. Herein is presented a case where an effort to evaluate the prospect of use of mobile phone data as secondary indicators of personal mental health through the lens of data analysis was put …


To Protect Or To Hide: An Investigation On Corporate Redacted Disclosure Motives Under New Fast Act Regulation, Yan MA, Qian MAO, Nan HU 2024 Xi'an Jiaotong University

To Protect Or To Hide: An Investigation On Corporate Redacted Disclosure Motives Under New Fast Act Regulation, Yan Ma, Qian Mao, Nan Hu

Research Collection School Of Computing and Information Systems

China adopted amendments allowing companies to redact filings without prior approval in 2016. Leveraging this change as a quasi-nature experiment, we explore whether managers utilize redacted information to withhold bad information in the more lenient regulatory environment. Our investigation uncovers a significant shift in managerial behavior: Since 2016, managers incline to employ redactions to obscure negative news rather than safeguarding proprietary data. Furthermore, we find that the poorer firm performance and a higher cost of equity are associated with the redacted disclosures after 2016, suggesting that investors perceive an increase in firm-specific risk attributed to withholding bad news through redactions.


The Efficacy Of Using Machine Learning Techniques For Identifying And Classifying “Fake News”, Muhammad Islam 2024 The Graduate Center, City University of New York

The Efficacy Of Using Machine Learning Techniques For Identifying And Classifying “Fake News”, Muhammad Islam

Dissertations, Theses, and Capstone Projects

In today's digital world, detecting fake news has emerged as a critical challenge, one that has significant effects on democracy and public discourse at large both regionally and globally. This research studies how diversity of news sources in training datasets affects how well machine learning models can classify fake vs true news. I used the Linear Support Vector Classification (LinearSVC) to create and compare two classification models: one was trained on a dataset that only had real news from a singular source, Reuters (Dataset 1), and the other was trained on a dataset that contained real news from Reuters, The …


Try It Together - Qualitative Coding With Atlas.Ti, Danping DONG, Bryan LEOW 2024 Singapore Management University

Try It Together - Qualitative Coding With Atlas.Ti, Danping Dong, Bryan Leow

AI for Research Week

This hands-on session introduces Atlas.ti, a well-established qualitative data analysis tool for analyzing your transcripts and textual data. The session will cover coding data, extracting insights, creating visualizations, and exploring the tool's latest AI features.


Intelligent Solutions For Retroactive Anomaly Detection And Resolution With Log File Systems, Derek G. Rogers, Chanvo Nguyen, Abhay Sharma 2024 Southern Methodist University

Intelligent Solutions For Retroactive Anomaly Detection And Resolution With Log File Systems, Derek G. Rogers, Chanvo Nguyen, Abhay Sharma

SMU Data Science Review

This paper explores the intricate challenges log files pose from data science and machine learning perspectives. Drawing inspiration from existing methods, LAnoBERT, PULL, LLMs, and the breadth of recent research, this paper aims to push the boundaries of machine learning for log file systems. Our study comprehensively examines the unique challenges presented in our problem setup, delineates the limitations of existing methods, and introduces innovative solutions. These contributions are organized to offer valuable insights, predictions, and actionable recommendations tailored for Microsoft's engineers working on log data analysis.


Memories Of Recipes In Twentieth-Century Irish Cookbooks, Gary Thompson 2024 Technological University Dublin

Memories Of Recipes In Twentieth-Century Irish Cookbooks, Gary Thompson

Dublin Gastronomy Symposium

This paper analyses and categorises the ways in which authors and their publishers have chosen to include the author’s culinary, food and personal memories within the texts of twenty twentieth century Irish Cookbooks. Cookbooks are subjects of culinary nostalgia with the reading of a recipe capable of triggering in the reader a memory of a meal enjoyed, a dish cooked in times past by a loved one, or recollections of the disgust felt for a food hated in childhood. Independent from the reader, the culinary memories of the author can be captured at the time of publication in the text …


Machine Learning: Face Recognition, Mohammed E. Amin 2024 CUNY New York City College of Technology

Machine Learning: Face Recognition, Mohammed E. Amin

Publications and Research

This project explores the cutting-edge intersection of machine learning (ML) and face recognition (FR) technology, utilizing the OpenCV library to pioneer innovative applications in real-time security and user interface enhancement. By processing live video feeds, our system encodes visual inputs and employs advanced face recognition algorithms to accurately identify individuals from a database of photos. This integration of machine learning with OpenCV not only showcases the potential for bolstering security systems but also enriches user experiences across various technological platforms. Through a meticulous examination of unique facial features and the application of sophisticated ML algorithms and neural networks, our project …


A Novel Caching Algorithm For Efficient Fine-Grained Access Control In Database Management Systems, Anadi Shakya 2024 Portland State University

A Novel Caching Algorithm For Efficient Fine-Grained Access Control In Database Management Systems, Anadi Shakya

Student Research Symposium

Fine-grained access Control (FGAC) in DBMS is vital for restricting user access to authorized data and enhancing security. FGAC policies govern how users are granted access to specific resources based on detailed criteria, ensuring security and privacy measures. Traditional methods struggle with scaling policies to thousands, causing delays in query responses. This paper introduces a novel caching algorithm designed to address this challenge by accelerating query processing and ensuring compliance with FGAC policies. In our approach, we create a circular hashmap and employ different replacement techniques to efficiently manage the cache, prioritizing entries that are visited more frequently. To evaluate …


Improving Tattle-Tale K-Deniability, Nicholas G.E. Morales 2024 Portland State University

Improving Tattle-Tale K-Deniability, Nicholas G.E. Morales

Student Research Symposium

Ensuring privacy for databases is an ongoing struggle. While the majority of work has focused on using access control lists to protect sensitive data these methods are vulnerable to inference attacks. A set of algorithms, referred to as Tattle-Tale, was developed that could protect sensitive data from being inferred however its runtime performance wasn’t suitable for production code. This set of algorithms contained two main subsets, Full Deniability and K-Deniability. My research focused on improving the runtime or utility of the K-Deniability algorithms. I investigated the runtime of the K-Deniability algorithms to identify what was slowing the process down. Aside …


A Little Loud And A Little Alone: A Phenomenology Of Leadership Identity Construction Among Women In Higher Education Technology, Amy Barry 2024 University of Nebraska-Lincoln

A Little Loud And A Little Alone: A Phenomenology Of Leadership Identity Construction Among Women In Higher Education Technology, Amy Barry

Department of Teaching, Learning, and Teacher Education: Dissertations, Theses, and Student Research

This qualitative study is an exploration of how women in higher education information technology (IT) positions navigate constructing their leadership identities. This includes the messy, personal, internal identity work that occurs prior to claiming their leadership identities on the public stage, followed by an examination of what the experience of attempting to claim and negotiate a leadership identity is like in the social context of their organizations. This educational and sociological study employs an Interpretative Phenomenological Analysis approach with a series of three interviews per participant that allowed the researcher to deeply explore the personal identity experiences of participants. Findings …


Quantum Machine Learning For Credit Scoring, Nikolaos SCHETAKIS, Davit AGHAMALYAN, Micheael BOGUSLAVSKY, Agnieszka REES, Marc RAKOTOMALALA, Paul Robert GRIFFIN 2024 Technical University of Crete

Quantum Machine Learning For Credit Scoring, Nikolaos Schetakis, Davit Aghamalyan, Micheael Boguslavsky, Agnieszka Rees, Marc Rakotomalala, Paul Robert Griffin

Research Collection School Of Computing and Information Systems

This study investigates the integration of quantum circuits with classical neural networks for enhancing credit scoring for small- and medium-sized enterprises (SMEs). We introduce a hybrid quantum–classical model, focusing on the synergy between quantum and classical rather than comparing the performance of separate quantum and classical models. Our model incorporates a quantum layer into a traditional neural network, achieving notable reductions in training time. We apply this innovative framework to a binary classification task with a proprietary real-world classical credit default dataset for SMEs in Singapore. The results indicate that our hybrid model achieves efficient training, requiring significantly fewer epochs …


Diffusion-Based Negative Sampling On Graphs For Link Prediction, Yuan FANG, Yuan FANG 2024 Singapore Management University

Diffusion-Based Negative Sampling On Graphs For Link Prediction, Yuan Fang, Yuan Fang

Research Collection School Of Computing and Information Systems

Link prediction is a fundamental task for graph analysis with important applications on the Web, such as social network analysis and recommendation systems, etc. Modern graph link prediction methods often employ a contrastive approach to learn robust node representations, where negative sampling is pivotal. Typical negative sampling methods aim to retrieve hard examples based on either predefined heuristics or automatic adversarial approaches, which might be inflexible or difficult to control. Furthermore, in the context of link prediction, most previous methods sample negative nodes from existing substructures of the graph, missing out on potentially more optimal samples in the latent space. …


Code For Care: Hypertension Prediction In Women Aged 18-39 Years, Kruti Sheth 2024 California State University, San Bernardino

Code For Care: Hypertension Prediction In Women Aged 18-39 Years, Kruti Sheth

Electronic Theses, Projects, and Dissertations

The longstanding prevalence of hypertension, often undiagnosed, poses significant risks of severe chronic and cardiovascular complications if left untreated. This study investigated the causes and underlying risks of hypertension in females aged between 18-39 years. The research questions were: (Q1.) What factors affect the occurrence of hypertension in females aged 18-39 years? (Q2.) What machine learning algorithms are suited for effectively predicting hypertension? (Q3.) How can SHAP values be leveraged to analyze the factors from model outputs? The findings are: (Q1.) Performing Feature selection using binary classification Logistic regression algorithm reveals an array of 30 most influential factors at an …


Comparative Predictive Analysis Of Stock Performance In The Tech Sector, Asaad Sendi 2024 University of New Orleans

Comparative Predictive Analysis Of Stock Performance In The Tech Sector, Asaad Sendi

University of New Orleans Theses and Dissertations

This study compares the performance of deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer, in predicting stock prices across five companies (AAPL, CSCO, META, MSFT, and TSLA) from July 2019 to July 2023. Key findings reveal that GRU models generally exhibit the lowest Mean Absolute Error (MAE), indicating higher precision, particularly notable for CSCO with a remarkably low MAE. While LSTM models often show slightly higher MAE values, they outperform Transformer models in capturing broader trends and variance in stock prices, as evidenced by higher R-squared (R2) values. Transformer models generally exhibit higher MAE …


The Quantitative Analysis And Visualization Of Nfl Passing Routes, Sandeep Chitturi 2024 University of Arkansas, Fayetteville

The Quantitative Analysis And Visualization Of Nfl Passing Routes, Sandeep Chitturi

Computer Science and Computer Engineering Undergraduate Honors Theses

The strategic planning of offensive passing plays in the NFL incorporates numerous variables, including defensive coverages, player positioning, historical data, etc. This project develops an application using an analytical framework and an interactive model to simulate and visualize an NFL offense's passing strategy under varying conditions. Using R-programming and data management, the model dynamically represents potential passing routes in response to different defensive schemes. The system architecture integrates data from historical NFL league years to generate quantified route scores through designed mathematical equations. This allows for the prediction of potential passing routes for offensive skill players in response to the …


An Empirical Study On The Efficacy Of Llm-Powered Chatbots In Basic Information Retrieval Tasks, Naja Faysal 2024 California State University, San Bernardino

An Empirical Study On The Efficacy Of Llm-Powered Chatbots In Basic Information Retrieval Tasks, Naja Faysal

Electronic Theses, Projects, and Dissertations

The rise of conversational user interfaces (CUIs) powered by large language models (LLMs) is transforming human-computer interaction. This study evaluates the efficacy of LLM-powered chatbots, trained on website data, compared to browsing websites for finding information about organizations across diverse sectors. A within-subjects experiment with 165 participants was conducted, involving similar information retrieval (IR) tasks using both websites (GUIs) and chatbots (CUIs). The research questions are: (Q1) Which interface helps users find information faster: LLM chatbots or websites? (Q2) Which interface helps users find more accurate information: LLM chatbots or websites?. The findings are: (Q1) Participants found information significantly faster …


Deep Learning In Indus Valley Script Digitization, Deva Munikanta Reddy Atturu 2024 Florida Institute of Technology

Deep Learning In Indus Valley Script Digitization, Deva Munikanta Reddy Atturu

Theses and Dissertations

This research introduces ASR-net(Ancient Script Recognition), a groundbreaking system that automatically digitizes ancient Indus seals by converting them into coded text, similar to Optical Character Recognition for modern languages. ASR-net, with an 95% success rate in identifying individual symbols, aims to address the crucial need for automated techniques in deciphering the enigmatic Indus script. Initially Yolov3 is utilized to create the bounding boxes around each graphemes present in the Indus Valley Seal. In addition to that we created M-net(Mahadevan) model to encode the graphemes. Beyond digitization, the paper proposes a new research challenge called the Motif Identification Problem (MIP) related …


On The Feasibility Of Simple Transformer For Dynamic Graph Modeling, Yuxia WU, Yuan FANG, Lizi LIAO 2024 Singapore Management University

On The Feasibility Of Simple Transformer For Dynamic Graph Modeling, Yuxia Wu, Yuan Fang, Lizi Liao

Research Collection School Of Computing and Information Systems

Dynamic graph modeling is crucial for understanding complex structures in web graphs, spanning applications in social networks, recommender systems, and more. Most existing methods primarily emphasize structural dependencies and their temporal changes. However, these approaches often overlook detailed temporal aspects or struggle with long-term dependencies. Furthermore, many solutions overly complicate the process by emphasizing intricate module designs to capture dynamic evolutions. In this work, we harness the strength of the Transformer’s self-attention mechanism, known for adeptly handling long-range dependencies in sequence modeling. Our approach offers a simple Transformer model, called SimpleDyG, tailored for dynamic graph modeling without complex modifications. We …


Multigprompt For Multi-Task Pre-Training And Prompting On Graphs, Xingtong YU, Chang ZHOU, Yuan FANG, Xinming ZHAN 2024 Singapore Management University

Multigprompt For Multi-Task Pre-Training And Prompting On Graphs, Xingtong Yu, Chang Zhou, Yuan Fang, Xinming Zhan

Research Collection School Of Computing and Information Systems

Graph Neural Networks (GNNs) have emerged as a mainstream technique for graph representation learning. However, their efficacy within an end-to-end supervised framework is significantly tied to the availability of task-specific labels. To mitigate labeling costs and enhance robustness in few-shot settings, pre-training on self-supervised tasks has emerged as a promising method, while prompting has been proposed to further narrow the objective gap between pretext and downstream tasks. Although there has been some initial exploration of prompt-based learning on graphs, they primarily leverage a single pretext task, resulting in a limited subset of general knowledge that could be learned from the …


Digital Commons powered by bepress