Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows,
2024
Singapore Management University
Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. Yu, Nabila Y. Salsabila, Shih-W Lin, Aldy Gunawan
Research Collection School Of Computing and Information Systems
This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable when a customer in the cluster is visited within the customer's time window. A Mixed Integer Linear Programming model is formulated for STOPTW to maximizing total profit while adhering to time window constraints. Since STOPTW is an NP-hard problem, a Simulated Annealing with Reinforcement Learning (SARL) algorithm is developed. The proposed SARL incorporates the core concepts …
Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework,
2024
Singapore Management University
Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft
Research Collection School Of Computing and Information Systems
Relevance-based ranking is a popular ingredient in recommenders, but it frequently struggles to meet fairness criteria because social and cultural norms may favor some item groups over others. For instance, some items might receive lower ratings due to some sort of bias (e.g. gender bias). A fair ranking should balance the exposure of items from advantaged and disadvantaged groups. To this end, we propose a novel post-processing framework to produce fair, exposure-aware recommendations. Our approach is based on an integer linear programming model maximizing the expected utility while satisfying a minimum exposure constraint. The model has fewer variables than previous …
Self-Supervised Pseudo Multi-Class Pre-Training For Unsupervised Anomaly Detection And Segmentation In Medical Images,
2023
Singapore Management University
Self-Supervised Pseudo Multi-Class Pre-Training For Unsupervised Anomaly Detection And Segmentation In Medical Images, Yu Tian, Fengbei Liu, Guansong Pang, Yuanhong Chen, Yuyuan Liu, Johan W. Verjans, Rajvinder Singh, Gustavo Carneiro
Research Collection School Of Computing and Information Systems
Unsupervised anomaly detection (UAD) methods are trained with normal (or healthy) images only, but during testing, they are able to classify normal and abnormal (or disease) images. UAD is an important medical image analysis (MIA) method to be applied in disease screening problems because the training sets available for those problems usually contain only normal images. However, the exclusive reliance on normal images may result in the learning of ineffective low-dimensional image representations that are not sensitive enough to detect and segment unseen abnormal lesions of varying size, appearance, and shape. Pre-training UAD methods with self-supervised learning, based on computer …
The Value Of Official Website Information In The Credit Risk Evaluation Of Smes,
2023
Hefei University of Technology
The Value Of Official Website Information In The Credit Risk Evaluation Of Smes, Cuiqing Jiang, Chang Yin, Qian Tang, Zhao Wang
Research Collection School Of Computing and Information Systems
The official websites of small and medium-sized enterprises (SMEs) not only reflect the willingness of an enterprise to disclose information voluntarily, but also can provide information related to the enterprises’ historical operations and performance. This research investigates the value of official website information in the credit risk evaluation of SMEs. To study the effect of different kinds of website information on credit risk evaluation, we propose a framework to mine effective features from two kinds of information disclosed on the official website of a SME—design-based information and content-based information—in predicting its credit risk. We select the SMEs in the software …
Link Tank,
2023
DePaul University
Link Tank
DePaul Magazine
A new JD certificate program in information technology, cybersecurity and data privacy provides DePaul University students with proficiency in both law and tech.
A Dynamic Online Dashboard For Tracking The Performance Of Division 1 Basketball Athletic Performance,
2023
Sacred Heart University
A Dynamic Online Dashboard For Tracking The Performance Of Division 1 Basketball Athletic Performance, Erica Juliano, Chelsea Thakkar, Christopher B. Taber, Mehul S. Raval, Kaya Tolga, Samah Senbel
School of Computer Science & Engineering Undergraduate Publications
Using Data Analytics is a vital part of sport performance enhancement. We collect data from the Division 1 'Women's basketball athletes and coaches at our university, for use in analysis and prediction. Several data sources are used daily and weekly: WHOOP straps, weekly surveys, polar straps, jump analysis, and training session information. In this paper, we present an online dashboard to visually present the data to the athletes and coaches. R shiny was used to develop the platform, with the data stored on the cloud for instant updates of the dashboard as the data becomes available. The performance of athletes …
Service-Oriented Framework For Developing Interoperable E-Health Systems In A Low-Income Country,
2023
Makerere University Business School
Service-Oriented Framework For Developing Interoperable E-Health Systems In A Low-Income Country, Bonface Abima, Agnes Nakakawa, Geoffrey Mayoka Kituyi
The African Journal of Information Systems
e-Health solutions in low-income countries are fragmented, address institution-specific needs, and do little to address the strategic need for inter-institutional exchange of health data. Although various e-health interoperability frameworks exist, contextual factors often hinder their effective adoption in low-income countries. This underlines the need to investigate such factors and to use findings to adapt existing e-health interoperability models. Following a design science approach, this research involved conducting an exploratory survey among 90 medical and Information Technology personnel from 67 health facilities in Uganda. Findings were used to derive requirements for e-health interoperability, and to orchestrate elements of a service oriented …
Integrating Human Expert Knowledge With Openai And Chatgpt: A Secure And Privacy-Enabled Knowledge Acquisition Approach,
2023
California Polytechnic State University, San Luis Obispo
Integrating Human Expert Knowledge With Openai And Chatgpt: A Secure And Privacy-Enabled Knowledge Acquisition Approach, Ben Phillips
College of Engineering Summer Undergraduate Research Program
Advanced Large Language Models (LLMs) struggle to produce accurate results and preserve user privacy for use cases involving domain-specific knowledge. A privacy-preserving approach for leveraging LLM capabilities on domain-specific knowledge could greatly expand the use cases of LLMs in a variety of disciplines and industries. This project explores a method for acquiring domain-specific knowledge for use with GPT3 while protecting sensitive user information with ML-based text-sanitization.
Your Cursor Reveals: On Analyzing Workers’ Browsing Behavior And Annotation Quality In Crowdsourcing Tasks,
2023
Singapore Management University
Your Cursor Reveals: On Analyzing Workers’ Browsing Behavior And Annotation Quality In Crowdsourcing Tasks, Pei-Chi Lo, Ee-Peng Lim
Research Collection School Of Computing and Information Systems
In this work, we investigate the connection between browsing behavior and task quality of crowdsourcing workers performing annotation tasks that require information judgements. Such information judgements are often required to derive ground truth answers to information retrieval queries. We explore the use of workers’ browsing behavior to directly determine their annotation result quality. We hypothesize user attention to be the main factor contributing to a worker’s annotation quality. To predict annotation quality at the task level, we model two aspects of task-specific user attention, also known as general and semantic user attentions . Both aspects of user attention can be …
Robust Bidirectional Poly-Matching,
2023
Singapore Management University
Robust Bidirectional Poly-Matching, Ween Jiann Lee, Maksim Tkachenko, Hady Wirawan Lauw
Research Collection School Of Computing and Information Systems
A fundamental problem in many scenarios is to match entities across two data sources. It is frequently presumed in prior work that entities to be matched are of comparable granularity. In this work, we address one-to-many or poly-matching in the scenario where entities have varying granularity. A distinctive feature of our problem is its bidirectional nature, where the 'one' or the 'many' could come from either source arbitrarily. Moreover, to deal with diverse entity representations that give rise to noisy similarity values, we incorporate novel notions of receptivity and reclusivity into a robust matching objective. As the optimal solution to …
Sentiment Analysis Of Public Perception Towards Elon Musk On Reddit (2008-2022),
2023
University of Louisville
Sentiment Analysis Of Public Perception Towards Elon Musk On Reddit (2008-2022), Daniel Maya Bonilla, Samuel Iradukunda, Pamela Thomas
The Cardinal Edge
As Elon Musk’s influence in technology and business continues to expand, it becomes crucial to comprehend public sentiment surrounding him in order to gauge the impact of his actions and statements. In this study, we conducted a comprehensive analysis of comments from various subreddits discussing Elon Musk over a 14-year period, from 2008 to 2022. Utilizing advanced sentiment analysis models and natural language processing techniques, we examined patterns and shifts in public sentiment towards Musk, identifying correlations with key events in his life and career. Our findings reveal that public sentiment is shaped by a multitude of factors, including his …
Blended Learning In The Wake Of Ict Infrastructure Deficiencies: The Case Of A Zimbabwean University,
2023
Women's University in Africa
Blended Learning In The Wake Of Ict Infrastructure Deficiencies: The Case Of A Zimbabwean University, Lucia Makwasha, Sam Jnr Takavarasha, Hazel Mubango
African Conference on Information Systems and Technology
In the wake of debates between actors in the Zimbabwean higher education sector about the effectiveness of e-learning models, it is important to investigate the effectiveness of using blended learning at a time when infrastructure challenges are disrupting ICT access. This paper aims to address this quest for a deeper understanding by investigating students' perceptions of blended learning at a selected Zimbabwean university. Twelve in-depth interviews were conducted with students from a Zimbabwean university that employs blended learning under an interpretivist paradigm. Vygotsky's Zone of Proximal Development (ZPD) was used for conceptualising students' cognitive development and Engestrom's (2003) Third-generation Activity …
On Predicting Esg Ratings Using Dynamic Company Networks,
2023
Singapore Management University
On Predicting Esg Ratings Using Dynamic Company Networks, Gary Ang, Zhiling Guo, Ee-Peng Lim
Research Collection School Of Computing and Information Systems
Environmental, social and governance (ESG) considerations play an increasingly important role due to the growing focus on sustainability globally. Entities, such as banks and investors, utilize ESG ratings of companies issued by specialized rating agencies to evaluate ESG risks of companies. The process of assigning ESG ratings by human analysts is however laborious and time intensive. Developing methods to predict ESG ratings could alleviate such challenges, allow ESG ratings to be generated in a more timely manner, cover more companies, and be more accessible. Most works study the effects of ESG ratings on target variables such as stock prices or …
Rosas: Deep Semi-Supervised Anomaly Detection With Contamination-Resilient Continuous Supervision,
2023
Singapore Management University
Rosas: Deep Semi-Supervised Anomaly Detection With Contamination-Resilient Continuous Supervision, Hongzuo Xu, Yijie Wang, Guansong Pang, Songlei Jian, Ning Liu, Yongjun Wang
Research Collection School Of Computing and Information Systems
Semi-supervised anomaly detection methods leverage a few anomaly examples to yield drastically improved performance compared to unsupervised models. However, they still suffer from two limitations: 1) unlabeled anomalies (i.e., anomaly contamination) may mislead the learning process when all the unlabeled data are employed as inliers for model training; 2) only discrete supervision information (such as binary or ordinal data labels) is exploited, which leads to suboptimal learning of anomaly scores that essentially take on a continuous distribution. Therefore, this paper proposes a novel semi-supervised anomaly detection method, which devises contamination-resilient continuous supervisory signals. Specifically, we propose a mass interpolation method …
Continual Collaborative Filtering Through Gradient Alignment,
2023
Singapore Management University
Continual Collaborative Filtering Through Gradient Alignment, Dinh Hieu Do, Hady Wirawan Lauw
Research Collection School Of Computing and Information Systems
A recommender system operates in a dynamic environment where new items emerge and new users join the system, resulting in ever-growing user-item interactions over time. Existing works either assume a model trained offline on a static dataset (requiring periodic re-training with ever larger datasets); or an online learning setup that favors recency over history. As privacy-aware users could hide their histories, the loss of older information means that periodic retraining may not always be feasible, while online learning may lose sight of users' long-term preferences. In this work, we adopt a continual learning perspective to collaborative filtering, by compartmentalizing users …
Generative Model-Based Testing On Decision-Making Policies,
2023
Singapore Management University
Generative Model-Based Testing On Decision-Making Policies, Li Zhuo, Xiongfei Wu, Derui Zhu, Mingfei Cheng, Siyuan Chen, Fuyuan Zhang, Xiaofei Xie, Lei Ma, Jianjun Zhao
Research Collection School Of Computing and Information Systems
The reliability of decision-making policies is urgently important today as they have established the fundamentals of many critical applications, such as autonomous driving and robotics. To ensure reliability, there have been a number of research efforts on testing decision-making policies that solve Markov decision processes (MDPs). However, due to the deep neural network (DNN)-based inherit and infinite state space, developing scalable and effective testing frameworks for decision-making policies still remains open and challenging.In this paper, we present an effective testing framework for decision-making policies. The framework adopts a generative diffusion model-based test case generator that can easily adapt to different …
Models And Algorithms For Promoting Diverse And Fair Query Results,
2023
New Jersey Institute of Technology
Models And Algorithms For Promoting Diverse And Fair Query Results, Md Mouinul Islam
Dissertations
Ensuring fairness and diversity in search results are two key concerns in compelling search and recommendation applications. This work explicitly studies these two aspects given multiple users' preferences as inputs, in an effort to create a single ranking or top-k result set that satisfies different fairness and diversity criteria. From group fairness standpoint, it adapts demographic parity like group fairness criteria and proposes new models that are suitable for ranking or producing top-k set of results. This dissertation also studies equitable exposure of individual search results in long tail data, a concept related to individual fairness. First, the dissertation focuses …
Diversification And Fairness In Top-K Ranking Algorithms,
2023
New Jersey Institute of Technology
Diversification And Fairness In Top-K Ranking Algorithms, Mahsa Asadi
Dissertations
Given a user query, the typical user interfaces, such as search engines and recommender systems, only allow a small number of results to be returned to the user. Hence, figuring out what would be the top-k results is an important task in information retrieval, as it helps to ensure that the most relevant results are presented to the user. There exists an extensive body of research that studies how to score the records and return top-k to the user. Moreover, there exists an extensive set of criteria that researchers identify to present the user with top-k results, and result diversification …
Human-Ai Complex Task Planning,
2023
New Jersey Institute of Technology
Human-Ai Complex Task Planning, Sepideh Nikookar
Dissertations
The process of complex task planning is ubiquitous and arises in a variety of compelling applications. A few leading examples include designing a personalized course plan or trip plan, designing music playlists/work sessions in web applications, or even planning routes of naval assets to collaboratively discover an unknown destination. For all of these aforementioned applications, creating a plan requires satisfying a basic construct, i.e., composing a sequence of sub-tasks (or items) that optimizes several criteria and satisfies constraints. For instance, in course planning, sub-tasks or items are core and elective courses, and degree requirements capture their complex dependencies as constraints. …
Data-Driven 2d Materials Discovery For Next-Generation Electronics,
2023
New Jersey Institute of Technology
Data-Driven 2d Materials Discovery For Next-Generation Electronics, Zeyu Zhang
Dissertations
The development of material discovery and design has lasted centuries in human history. After the concept of modern chemistry and material science was established, the strategy of material discovery relies on the experiments. Such a strategy becomes expensive and time-consuming with the increasing number of materials nowadays. Therefore, a novel strategy that is faster and more comprehensive is urgently needed. In this dissertation, an experiment-guided material discovery strategy is developed and explained using metal-organic frameworks (MOFs) as instances. The advent of 7r-stacked layered MOFs, which offer electrical conductivity on top of permanent porosity and high surface area, opened up new …
