Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

2,061 Full-Text Articles 3,335 Authors 754,230 Downloads 167 Institutions

All Articles in Theory and Algorithms

Faceted Search

2,061 full-text articles. Page 4 of 86.

Index Bucketing: A Novel Approach To Manipulating Data Structures, Jeffrey Myers 2023 Western Kentucky University

Index Bucketing: A Novel Approach To Manipulating Data Structures, Jeffrey Myers

Masters Theses & Specialist Projects

Handling nested data collections in large-scale distributed systems poses considerable challenges in query processing, often resulting in substantial costs and error susceptibility. While substantial efforts have been directed toward overcoming computation hurdles in querying vast data collections within relational databases, scant attention has been devoted to the manipulation and flattening procedures necessary for unnesting these data collections. Flattening operations, integral to unnesting, frequently yield copious duplicate data and entail a loss of information, devoid of mechanisms for reconstructing the original structure. These challenges exacerbate in scenarios involving skewed, nested data with irregular inner data collections. Processing such data demands an …


Hypothyroid Disease Analysis By Using Machine Learning, SANJANA SEELAM 2023 California State University, San Bernardino

Hypothyroid Disease Analysis By Using Machine Learning, Sanjana Seelam

Electronic Theses, Projects, and Dissertations

Thyroid illness frequently manifests as hypothyroidism. It is evident that people with hypothyroidism are primarily female. Because the majority of people are unaware of the illness, it is quickly becoming more serious. It is crucial to catch it early on so that medical professionals can treat it more effectively and prevent it from getting worse. Machine learning illness prediction is a challenging task. Disease prediction is aided greatly by machine learning. Once more, unique feature selection strategies have made the process of disease assumption and prediction easier. To properly monitor and cure this illness, accurate detection is essential. In order …


Robust Test Selection For Deep Neural Networks, Weifeng SUN, Meng YAN, Zhongxin LIU, David LO 2023 Chongqing University

Robust Test Selection For Deep Neural Networks, Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely used in various domains, such as computer vision and software engineering. Although many DNNs have been deployed to assist various tasks in the real world, similar to traditional software, they also suffer from defects that may lead to severe outcomes. DNN testing is one of the most widely used methods to ensure the quality of DNNs. Such method needs rich test inputs with oracle information (expected output) to reveal the incorrect behaviors of a DNN model. However, manually labeling all the collected test inputs is a labor-intensive task, which delays the quality assurance …


C³: Code Clone-Based Identification Of Duplicated Components, Yanming YANG, Ying ZOU, Xing HU, David LO, Chao NI, John C. GRUNDY, Xin: XIA 2023 Singapore Management University

C³: Code Clone-Based Identification Of Duplicated Components, Yanming Yang, Ying Zou, Xing Hu, David Lo, Chao Ni, John C. Grundy, Xin: Xia

Research Collection School Of Computing and Information Systems

Reinventing the wheel is a detrimental programming practice in software development that frequently results in the introduction of duplicated components. This practice not only leads to increased maintenance and labor costs but also poses a higher risk of propagating bugs throughout the system. Despite numerous issues introduced by duplicated components in software, the identification of component-level clones remains a significant challenge that existing studies struggle to effectively tackle. Specifically, existing methods face two primary limitations that are challenging to overcome: 1) Measuring the similarity between different components presents a challenge due to the significant size differences among them; 2) Identifying …


Integrating Ai Into Uavs, Huong Quach 2023 Old Dominion University

Integrating Ai Into Uavs, Huong Quach

Cybersecurity Undergraduate Research Showcase

This research project explores the application of Deep Learning (DL) techniques, specifically Convolutional Neural Networks (CNNs), to develop a smoke detection algorithm for deployment on mobile platforms, such as drones and self-driving vehicles. The project focuses on enhancing the decision-making capabilities of these platforms in emergency response situations. The methodology involves three phases: algorithm development, algorithm implementation, and testing and optimization. The developed CNN model, based on ResNet50 architecture, is trained on a dataset of fire, smoke, and neutral images obtained from the web. The algorithm is implemented on the Jetson Nano platform to provide responsive support for first responders. …


Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi WU, Shangqing LIU, Xiao YANG, Zhiming LI, Jun SUN, Shang-Wei LIN 2023 Singapore Management University

Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi Wu, Shangqing Liu, Xiao Yang, Zhiming Li, Jun Sun, Shang-Wei Lin

Research Collection School Of Computing and Information Systems

Learning-based approaches that learn code representations for software vulnerability detection have been proven to produce inspiring results. However, they still fail to capture complete and precise vulnerability semantics for code representations. To address the limitations, in this work, we propose a learning-based approach namely SnapVuln, which first utilizes multiple vulnerability-specific inter-procedural slicing algorithms to capture vulnerability semantics of various types and then employs a Gated Graph Neural Network (GGNN) with an attention mechanism to learn vulnerability semantics. We compare SnapVuln with state-of-the-art learning-based approaches on two public datasets, and confirm that SnapVuln outperforms them. We further perform an ablation study …


Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto 2023 Chapman University

Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto

Computational and Data Sciences (PhD) Dissertations

This dissertation aims to extend the boundaries of Programming Computable Functions (PCF) by introducing a novel collection of categories referred to as Random Variable Spaces. Originating as a generalization of Quasi-Borel Spaces, Random Variable Spaces are rigorously defined as categories where objects are sets paired with a collection of random variables from an underlying measurable space. These spaces offer a theoretical foundation for extending PCF to natively handle stochastic elements.

The dissertation is structured into seven chapters that provide a multi-disciplinary background, from PCF and Measure Theory to Category Theory with special attention to Monads and the Giry Monad. The …


Developing Detection And Mapping Of Roads Within Various Forms Of Media Using Opencv, Jordan C. Lyle 2023 University of Arkansas Fayetteville

Developing Detection And Mapping Of Roads Within Various Forms Of Media Using Opencv, Jordan C. Lyle

Computer Science and Computer Engineering Undergraduate Honors Theses

OpenCV, and Computer Vision in general, has been a Computer Science topic that has interested me for a long time while completing my Bachelor’s degree at the University of Arkansas. As a result of this, I ended up choosing to utilize OpenCV in order to complete the task of detecting road-lines and mapping roads when given a wide variety of images. The purpose of my Honors research and this thesis is to detail the process of creating an algorithm to detect the road-lines such that the results are effective and instantaneous, as well as detail how Computer Vision can be …


Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury 2023 California Polytechnic State University, San Luis Obispo

Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury

Master's Theses

A central problem in neuroscience is to understand how memories are formed as a result of the activities of neurons. Valiant’s neuroidal model attempted to address this question by modeling the brain as a random graph and memories as subgraphs within that graph. However the question of memory capacity within that model has not been explored: how many memories can the brain hold? Valiant introduced the concept of interference between memories as the defining factor for capacity; excessive interference signals the model has reached capacity. Since then, exploration of capacity has been limited, but recent investigations have delved into the …


A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu 2023 East Tennessee State University

A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu

Electronic Theses and Dissertations

Graph Neural Networks and Transformers are very powerful frameworks for learning machine learning tasks. While they were evolved separately in diverse fields, current research has revealed some similarities and links between them. This work focuses on bridging the gap between GNNs and Transformers by offering a uniform framework that highlights their similarities and distinctions. We perform positional encodings and identify key properties that make the positional encodings node embeddings. We found that the properties of expressiveness, efficiency and interpretability were achieved in the process. We saw that it is possible to use positional encodings as node embeddings, which can be …


Closing The Gap: Leveraging Aes-Ni To Balance Adversarial Advantage And Honest User Performance In Argon2i, Nicholas Harrell, Nathaniel Krakauer 2023 Purdue University

Closing The Gap: Leveraging Aes-Ni To Balance Adversarial Advantage And Honest User Performance In Argon2i, Nicholas Harrell, Nathaniel Krakauer

CERIAS Technical Reports

The challenge of providing data privacy and integrity while maintaining efficient performance for honest users is a persistent concern in cryptography. Attackers exploit advances in parallel hardware and custom circuit hardware to gain an advantage over regular users. One such method is the use of Application-Specific Integrated Circuits (ASICs) to optimize key derivation function (KDF) algorithms, giving adversaries a significant advantage in password guessing and recovery attacks. Other examples include using graphical processing units (GPUs) and field programmable gate arrays (FPGAs). We propose a focused approach to close the gap between adversarial advantage and honest user performance by leveraging the …


Foundations Of Node Representation Learning, Sudhanshu Chanpuriya 2023 University of Massachusetts Amherst

Foundations Of Node Representation Learning, Sudhanshu Chanpuriya

Doctoral Dissertations

Low-dimensional node representations, also called node embeddings, are a cornerstone in the modeling and analysis of complex networks. In recent years, advances in deep learning have spurred development of novel neural network-inspired methods for learning node representations which have largely surpassed classical 'spectral' embeddings in performance. Yet little work asks the central questions of this thesis: Why do these novel deep methods outperform their classical predecessors, and what are their limitations? We pursue several paths to answering these questions. To further our understanding of deep embedding methods, we explore their relationship with spectral methods, which are better understood, and show …


Hiking Trail Generation In Infinite Landscapes, Matthew Jensen 2023 Southern Adventist University

Hiking Trail Generation In Infinite Landscapes, Matthew Jensen

MS in Computer Science Project Reports

This project procedurally generates an infinite wilderness populated with deterministic hiking trails. Our approach recognizes that hiking trails depend on contextual information beyond the location of the path itself. To address this, we implemented a layered procedural system that orchestrates the generation process. This helps ensure the availability of contextual data at each stage. The first layer handles terrain generation, establishing the foundational landscape upon which trails will traverse. Subsequent layers handle point of interest identification and selection, trail network optimization through proximity graphs, and efficient pathfinding across the terrain. A notable feature of our approach is the deterministic nature …


Robust Maximum Capture Facility Location Under Random Utility Maximization Models, Tien Thanh DAM, Thuy Anh TA, Tien MAI 2023 Singapore Management University

Robust Maximum Capture Facility Location Under Random Utility Maximization Models, Tien Thanh Dam, Thuy Anh Ta, Tien Mai

Research Collection School Of Computing and Information Systems

We study a robust version of the maximum capture facility location problem in a competitive market, assuming that each customer chooses among all available facilities according to a random utility maximization (RUM) model. We employ the generalized extreme value (GEV) family of models and assume that the parameters of the RUM model are not given exactly but lie in convex uncertainty sets. The problem is to locate new facilities to maximize the worst-case captured user demand. We show that, interestingly, our robust model preserves the monotonicity and submodularity from its deterministic counterpart, implying that a simple greedy heuristic can guarantee …


Enhancing Search Engine Results: A Comparative Study Of Graph And Timeline Visualizations For Semantic And Temporal Relationship Discovery, Muhammad Shahiq Qureshi 2023 University of Denver

Enhancing Search Engine Results: A Comparative Study Of Graph And Timeline Visualizations For Semantic And Temporal Relationship Discovery, Muhammad Shahiq Qureshi

Electronic Theses and Dissertations

In today’s digital age, search engines have become indispensable tools for finding information among the corpus of billions of webpages. The standard that most search engines follow is to display search results in a list-based format arranged according to a ranking algorithm. Although this format is good for presenting the most relevant results to users, it fails to represent the underlying relations between different results. These relations, among others, can generally be of either a temporal or semantic nature. A user who wants to explore the results that are connected by those relations would have to make a manual effort …


Motif-Cluster: A Spatial Clustering Package For Repetitive Motif Binding Patterns, Mengyuan Zhou 2023 University of Nebraska-Lincoln

Motif-Cluster: A Spatial Clustering Package For Repetitive Motif Binding Patterns, Mengyuan Zhou

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Previous efforts in using genome-wide analysis of transcription factor binding sites (TFBSs) have overlooked the importance of ranking potential significant regulatory regions, especially those with repetitive binding within a local region. Identifying these homogenous binding sites is critical because they have the potential to amplify the binding affinity and regulation activity of transcription factors, impacting gene expression and cellular functions. To address this issue, we developed an open-source tool Motif-Cluster that prioritizes and visualizes transcription factor regulatory regions by incorporating the idea of local motif clusters. Motif-Cluster can rank the significant transcription factor regulatory regions without the need for experimental …


Joint Location And Cost Planning In Maximum Capture Facility Location Under Random Utilities, Ngan H. DUONG, Tien Thanh DAM, Thuy Anh TA, Tien MAI 2023 Singapore Management University

Joint Location And Cost Planning In Maximum Capture Facility Location Under Random Utilities, Ngan H. Duong, Tien Thanh Dam, Thuy Anh Ta, Tien Mai

Research Collection School Of Computing and Information Systems

We study a joint facility location and cost planning problem in a competitive market under random utility maximization (RUM) models. The objective is to locate new facilities and make decisions on the costs (or budgets) to spend on the new facilities, aiming to maximize an expected captured customer demand, assuming that customers choose a facility among all available facilities according to a RUM model. We examine two RUM frameworks in the discrete choice literature, namely, the additive and multiplicative RUM. While the former has been widely used in facility location problems, we are the first to explore the latter in …


An Idealist’S Approach For Smart Contract Correctness, Duy Tai NGUYEN, Hong Long PHAM, Jun SUN, Quang Loc LE 2023 Singapore Management University

An Idealist’S Approach For Smart Contract Correctness, Duy Tai Nguyen, Hong Long Pham, Jun Sun, Quang Loc Le

Research Collection School Of Computing and Information Systems

In this work, we experiment an idealistic approach for smart contract correctness verification and enforcement, based on the assumption that developers are either desired or required to provide a correctness specification due to the importance of smart contracts and the fact that they are immutable after deployment. We design a static verification system with a specification language which supports fully compositional verification (with the help of function specifications, contract invariants, loop invariants and call invariants). Our approach has been implemented in a tool named iContract which automatically proves the correctness of a smart contract statically or checks the unverified part …


Artificial Intelligence History, And Libraries: History And Legacy Of Library Contributions To Machine Learning, Wilhelmina Randtke 2023 Georgia Southern University

Artificial Intelligence History, And Libraries: History And Legacy Of Library Contributions To Machine Learning, Wilhelmina Randtke

Library Faculty Presentations

Machine learning seems to be newly everywhere. It's not new, so much as faster processing makes it newly useful. Imagine an automated cataloging program that takes 300 years to run, versus one that takes a week to run. Increased processing speed is a substantive change. This presentation overviews the history of libraries and artificial intelligence. First, teasing out past applications of machine learning in libraries. High quality results and concrete applications of artificial intelligence in libraries have been explored and published for decades. Over time, faster processing allows use at scale. Second, how library and metadata work contributes to machine …


Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff 2023 Embry-Riddle Aeronautical University

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Digital Commons powered by bepress