Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

1467 Full-Text Articles 1604 Authors 310922 Downloads 103 Institutions

All Articles in Artificial Intelligence and Robotics

Faceted Search

1467 full-text articles. Page 1 of 47.

Question Type Recognition Using Natural Language Input, Aishwarya Soni 2017 San Jose State University

Question Type Recognition Using Natural Language Input, Aishwarya Soni

Master's Projects

Recently, numerous specialists are concentrating on the utilization of Natural Language Processing (NLP) systems in various domains, for example, data extraction and content mining. One of the difficulties with these innovations is building up a precise Question and Answering (QA) System. Question type recognition is the most significant task in a QA system, for example, chat bots. Organization such as National Institute of Standards (NIST) hosts a conference series called as Text REtrieval Conference (TREC) series which keeps a competition every year to encourage and improve the technique of information retrieval from a large corpus of text. When a user ...


Travel Mode Identification With Smartphone Sensors, Xing Su 2017 The Graduate Center, City University of New York

Travel Mode Identification With Smartphone Sensors, Xing Su

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

Personal trips in a modern urban society typically involve multiple travel modes. Recognizing a traveller's transportation mode is not only critical to personal context-awareness in related applications, but also essential to urban traffic operations, transportation planning, and facility design. While the state of the art in travel mode recognition mainly relies on large-scale infrastructure-based fixed sensors or on individuals' GPS devices, the emergence of the smartphone provides a promising alternative with its ever-growing computing, networking, and sensing powers. In this thesis, we propose new algorithms for travel mode identification using smartphone sensors. The prototype system is built upon the ...


Robot Society, 2017 Vocational Training Council

Robot Society

SIGNED: The Magazine of The Hong Kong Design Institute

Can the emerging field of social robotics deliver on its promise to revolutionise the way we use tech?


Analyzing The Keystroke Dynamics Of Web Identifiers, Andrew G. West 2017 University of Pennsylvania

Analyzing The Keystroke Dynamics Of Web Identifiers, Andrew G. West

Dr. Andrew G. West

Web identifiers such as usernames, hashtags, and domain names serve important roles in online navigation, communication, and community building. Therefore the entities that choose such names must ensure that end-users are able to quickly and accurately enter them in applications. Uniqueness requirements, a desire for short strings, and an absence of delimiters often constrain this name selection process.

To gain perspective on the speed and correctness of name entry, we crowdsource the typing of 51,000+ web identifiers. Surface level analysis reveals, for example, that typing speed is generally a linear function of identifier length. Examining keystroke dynamics at finer ...


Housing Price Prediction Using Support Vector Regression, Jiao Yang Wu 2017 San Jose State University

Housing Price Prediction Using Support Vector Regression, Jiao Yang Wu

Master's Projects

The relationship between house prices and the economy is an important motivating factor for predicting house prices. Housing price trends are not only the concern of buyers and sellers, but it also indicates the current economic situation. Therefore, it is important to predict housing prices without bias to help both the buyers and sellers make their decisions. This project uses an open source dataset, which include 20 explanatory features and 21,613 entries of housing sales in King County, USA. We compare different feature selection methods and feature extraction algorithm with Support Vector Regression (SVR) to predict the house prices ...


Predicting Pancreatic Cancer Using Support Vector Machine, Akshay Bodkhe 2017 San Jose State University

Predicting Pancreatic Cancer Using Support Vector Machine, Akshay Bodkhe

Master's Projects

This report presents an approach to predict pancreatic cancer using Support Vector Machine Classification algorithm. The research objective of this project it to predict pancreatic cancer on just genomic, just clinical and combination of genomic and clinical data. We have used real genomic data having 22,763 samples and 154 features per sample. We have also created Synthetic Clinical data having 400 samples and 7 features per sample in order to predict accuracy of just clinical data. To validate the hypothesis, we have combined synthetic clinical data with subset of features from real genomic data. In our results, we observed ...


An Open Source Discussion Group Recommendation System, Sarika Padmashali 2017 San Jose State University

An Open Source Discussion Group Recommendation System, Sarika Padmashali

Master's Projects

A recommendation system analyzes user behavior on a website to make suggestions about what a user should do in the future on the website. It basically tries to predict the “rating” or “preference” a user would have for an action. Yioop is an open source search engine, wiki system, and user discussion group system managed by Dr. Christopher Pollett at SJSU. In this project, we have developed a recommendation system for Yioop where users are given suggestions about the threads and groups they could join based on their user history. We have used collaborative filtering techniques to make recommendations and ...


Path-Finding Methodology For Visually-Impaired Patients Based On Image-Processing, Abhilash Goyal 2017 San Jose State University

Path-Finding Methodology For Visually-Impaired Patients Based On Image-Processing, Abhilash Goyal

Master's Projects

The objective of this project is to propose and develop the path-finding methodology for the visually impaired patients. The proposed novel methodology is based on image-processing and it is targeted for the patients who are not completely blind. The major problem faced by visually impaired patients is to walk independently. It is mainly because these patients can not see obstacles in front of them due to the degradation in their eye sight. Degradation in the eye-sight is mainly because either the light doesn't focus on the retina properly or due to the malfunction of the photoreceptor cells on the ...


Neural Net Stock Trend Predictor, Sonal Kabra 2017 San Jose State University

Neural Net Stock Trend Predictor, Sonal Kabra

Master's Projects

This report analyzes new and existing stock market prediction techniques. Traditional technical analysis was combined with various machine-learning approaches such as artificial neural networks, k-nearest neighbors, and decision trees. Experiments we conducted show that technical analysis together with machine learning can be used to profitably direct an investor’s trading decisions. We are measuring the profitability of experiments by calculating the percentage weekly return for each stock entity under study. Our algorithms and simulations are developed using Python. The technical analysis methodology combined with machine learning algorithms show promising results which we discuss in this report.


Ai For Classic Video Games Using Reinforcement Learning, Shivika Sodhi 2017 San Jose State University

Ai For Classic Video Games Using Reinforcement Learning, Shivika Sodhi

Master's Projects

Deep reinforcement learning is a technique to teach machines tasks based on trial and error experiences in the way humans learn. In this paper, some preliminary research is done to understand how reinforcement learning and deep learning techniques can be combined to train an agent to play Archon, a classic video game. We compare two methods to estimate a Q function, the function used to compute the best action to take at each point in the game. In the first approach, we used a Q table to store the states and weights of the corresponding actions. In our experiments, this ...


Document Classification Using Machine Learning, Ankit Basarkar 2017 San Jose State University

Document Classification Using Machine Learning, Ankit Basarkar

Master's Projects

To perform document classification algorithmically, documents need to be represented such that it is understandable to the machine learning classifier. The report discusses the different types of feature vectors through which document can be represented and later classified. The project aims at comparing the Binary, Count and TfIdf feature vectors and their impact on document classification. To test how well each of the three mentioned feature vectors perform, we used the 20-newsgroup dataset and converted the documents to all the three feature vectors. For each feature vector representation, we trained the Naïve Bayes classifier and then tested the generated ...


Credit Scoring Using Logistic Regression, Ansen Mathew 2017 San Jose State University

Credit Scoring Using Logistic Regression, Ansen Mathew

Master's Projects

This report presents an approach to predict the credit scores of customers using the Logistic Regression machine learning algorithm. The research objective of this project is to perform a comparative study between feature selection and feature extraction, against the same dataset using the Logistic Regression machine learning algorithm. For feature selection, we have used Stepwise Logistic Regression. For feature extraction, we have used Singular Value Decomposition (SVD) and Weighted Singular Value Decomposition (SVD). In order to test the accuracy obtained using feature selection and feature extraction, we used a public credit dataset having 11 features and 150,000 records. After ...


Evolvability: What Is It And How Do We Get It?, Matthew Moreno 2017 University of Puget Sound

Evolvability: What Is It And How Do We Get It?, Matthew Moreno

Honors Program Theses

Biological organisms exhibit spectacular adaptation to their environments. However, another marvel of biology lurks behind the adaptive traits that organisms exhibit over the course of their lifespans: it is hypothesized that biological organisms also exhibit adaptation to the evolutionary process itself. That is, biological organisms are thought to possess traits that facilitate evolution. The term evolvability was coined to describe this type of adaptation. The question of evolvability has special practical relevance to computer science researchers engaged in longstanding efforts to harness evolution as an algorithm for automated design. It is hoped that a more nuanced understanding of biological evolution ...


Shopbot: An Image Based Search Application For E-Commerce Domain, Nishant Goel 2017 San Jose State University

Shopbot: An Image Based Search Application For E-Commerce Domain, Nishant Goel

Master's Projects

For the past few years, e-commerce has changed the way people buy and sell products. People use this business model to do business over the Internet. In this domain, Human-Computer Interaction has been gaining momentum. Lately, there has been an upsurge in agent based applications in the form of intelligent personal assistants (also known as Chatbots) which make it easier for users to interact with digital services via a conversation, in the same way we talk to humans. In e- commerce, these assistants offer mainly text-based or speech based search capabilities. They can handle search for most products, but cannot ...


Cascaded Facial Detection Algorithms To Improve Recognition, Edmund Yee 2017 San Jose State University

Cascaded Facial Detection Algorithms To Improve Recognition, Edmund Yee

Master's Projects

The desire to be able to use computer programs to recognize certain biometric qualities of people have been desired by several different types of organizations. One of these qualities worked on and has achieved moderate success is facial detection and recognition. Being able to use computers to determine where and who a face is has generated several different algorithms to solve this problem with different benefits and drawbacks. At the backbone of each algorithm is the desire for it to be quick and accurate. By cascading face detection algorithms, accuracy can be improved but runtime will subsequently be increased. Neural ...


Application Of Computational Methods To Study The Selection Of Authentic And Cryptic Splice Sites, Tapomay Dey 2017 San Jose State University

Application Of Computational Methods To Study The Selection Of Authentic And Cryptic Splice Sites, Tapomay Dey

Master's Projects

Proteins are building blocks of the bodies of eukaryotes, and the process of synthesizing proteins from DNA is crucial for the good health of an organism [13]. However, some mutations in the DNA may disrupt the selection of 5’ or 3’ splice sites by a spliceosome. An important research question is whether the disruptions have a stochastic relation to the position of nucleotides in the vicinity of the known authentic and cryptic splice sites. This can be achieved by proving that the authentic and cryptic splice sites are intrinsically different. However, the behavior of the spliceosome is not accurately known ...


Computational Analysis Of Cryptic Splice Sites, Remya Mohanan 2017 San Jose State University

Computational Analysis Of Cryptic Splice Sites, Remya Mohanan

Master's Projects

DNA in the nucleus of all eukaryotes is transcribed into mRNA where it is then translated into proteins. The DNA which is transcribed into mRNA is composed of coding and non-coding regions called exons and introns, respectively. It undergoes a post-trancriptional process called splicing where the introns or the non-coding regions are removed from the pre-mRNA to give the mature mRNA. Splicing of pre-mRNAs at 5 ́ and 3ˊ ends is a crucial step in the gene expression pathway. The mis-splicing by the spliceosome at different sites known as cryptic splice sites is caused by mutations which will affect the primary ...


Comparing Authentic And Cryptic 5’ Splice Sites Using Hidden Markov Models And Decision Trees, Pratikshya Mishra 2017 San Jose State University

Comparing Authentic And Cryptic 5’ Splice Sites Using Hidden Markov Models And Decision Trees, Pratikshya Mishra

Master's Projects

Splicing is the editing of the precursor mRNA produced during transcription. The mRNA contains a large number of nucleotides in the introns and exons which are spliced to remove the introns and bind the exons to produce the mature mRNA which is translated to generate proteins. Hence accurate splicing at 5’ and 3’ splice sites (authentic splice sites (AuthSS)) is of foremost importance. The 5’ and 3’ splice sites are characterized by consensus sequences. Eukaryotic genome also contains splice sites known as Cryptic Splice Sites (CSS) that match the consensus. But the CSS are activated only when there is a ...


A Chatbot Framework For Yioop, Harika Nukala 2017 San Jose State University

A Chatbot Framework For Yioop, Harika Nukala

Master's Projects

Over the past few years, messaging applications have become more popular than Social networking sites. Instead of using a specific application or website to access some service, chatbots are created on messaging platforms to allow users to interact with companies’ products and also give assistance as needed. In this project, we designed and implemented a chatbot Framework for Yioop. The goal of the Chatbot Framework for Yioop project is to provide a platform for developers in Yioop to build and deploy chatbot applications. A chatbot is a web service that can converse with users using artificial intelligence in messaging platforms ...


Headline Generation Using Deep Neural Networks, Dhruven Vora 2017 San Jose State University

Headline Generation Using Deep Neural Networks, Dhruven Vora

Master's Projects

News headline generation is one of the important text summarization tasks. Human generated news headlines are generally intended to catch the eye rather than provide useful information. There have been many approaches to generate meaningful headlines by either using neural networks or using linguistic features. In this report, we are proposing a novel approach based on integrating Hedge Trimmer, which is a grammar based extractive summarization system with a deep neural network abstractive summarization system to generate meaningful headlines. We analyze the results against current recurrent neural network based headline generation system.


Digital Commons powered by bepress