Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

1,997 Full-Text Articles 3,186 Authors 739,530 Downloads 161 Institutions

All Articles in Theory and Algorithms

Faceted Search

1,997 full-text articles. Page 1 of 83.

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen YUAN, Heyan HUANG, Yixin CAO, Qianwen CAO 2024 Singapore Management University

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao

Research Collection School Of Computing and Information Systems

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one hand, different from previous works, which carefully insert one token between two words per action, we insert …


Music Genre Classification Capabilities Of Enhanced Neural Network Architectures, Joshua Engelkes 2024 University of Minnesota Morris

Music Genre Classification Capabilities Of Enhanced Neural Network Architectures, Joshua Engelkes

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal

With the increase of digital music audio uploads, applications that deal with music information have been widely requested by streaming platforms. Automatic music genre classification is an important function of music recommendation and music search applications. Since the music genre categorization criteria continually shift, data-driven methods such as neural networks have been proven especially useful to music information retrieval. An enhanced CNN architecture, the Bottom-up Broadcast Neural Network, uses mel-spectrograms to push music data through a network where important low-level information is preserved. An enhanced RNN architecture, the Independent Recurrent Neural Network for Music Genre Classification, takes advantage of the …


Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon LOPES, Rodrigo ALVES, Antoine LEDENT, Rodrygo L. T. SANTOS, Marius KLOFT 2024 Singapore Management University

Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft

Research Collection School Of Computing and Information Systems

Relevance-based ranking is a popular ingredient in recommenders, but it frequently struggles to meet fairness criteria because social and cultural norms may favor some item groups over others. For instance, some items might receive lower ratings due to some sort of bias (e.g. gender bias). A fair ranking should balance the exposure of items from advantaged and disadvantaged groups. To this end, we propose a novel post-processing framework to produce fair, exposure-aware recommendations. Our approach is based on an integer linear programming model maximizing the expected utility while satisfying a minimum exposure constraint. The model has fewer variables than previous …


Imitate The Good And Avoid The Bad: An Incremental Approach To Safe Reinforcement Learning, Minh Huy HOANG, Mai Anh TIEN, Pradeep VARAKANTHAM 2024 Singapore Management University

Imitate The Good And Avoid The Bad: An Incremental Approach To Safe Reinforcement Learning, Minh Huy Hoang, Mai Anh Tien, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

A popular framework for enforcing safe actions in Reinforcement Learning (RL) is Constrained RL, where trajectory based constraints on expected cost (or other cost measures) are employed to enforce safety and more importantly these constraints are enforced while maximizing expected reward. Most recent approaches for solving Constrained RL convert the trajectory based cost constraint into a surrogate problem that can be solved using minor modifications to RL methods. A key drawback with such approaches is an over or underestimation of the cost constraint at each state. Therefore, we provide an approach that does not modify the trajectory based cost constraint …


Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner 2024 Michigan Technological University

Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner

Dissertations, Master's Theses and Master's Reports

The unifying theme of this thesis is the characterization of “perfect randomness,” i.e., independent and identically distributed (IID) stochastic processes as these are applied in physical science. Two specific and mathematically distinct applications are chosen: (i) Radar and optical polarimetry; (ii) Analysis of time series in meteorology. In (i), IID process of a special kind, namely, with a distribution defined by symmetry, is used to link its multivariate Gaussian density to uniformity on the Poincaré sphere. This “statistical ellipsometry” approach is then used to relate polarimetric mismatches or imbalances to ellipsometric variables and suitably chosen cross-correlation measures. In (ii), recently …


A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu 2024 Nanjing University Post & Telecommunication

A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu

Computer Science Faculty Publications

The construction of knowledge graph is beneficial for grid production, electrical safety protection, fault diagnosis and traceability in an observable and controllable way. Highly-precision text classification algorithm is crucial to build a professional knowledge graph in power system. Unfortunately, there are a large number of poorly described and specialized texts in the power business system, and the amount of data containing valid labels in these texts is low. This will bring great challenges to improve the precision of text classification models. To offset the gap, we propose a classification algorithm for Chinese text in the power system based on deep …


Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White 2024 University of Adelaide

Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White

Physics Faculty Publications

Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the …


Efficient Privacy-Preserving Spatial Data Query In Cloud Computing, Yinbin MIAO, Yutao YANG, Xinghua LI, Linfeng WEI, Zhiquan LIU, Robert H. DENG 2024 Singapore Management University

Efficient Privacy-Preserving Spatial Data Query In Cloud Computing, Yinbin Miao, Yutao Yang, Xinghua Li, Linfeng Wei, Zhiquan Liu, Robert H. Deng

Research Collection School Of Computing and Information Systems

With the rapid development of geographic location technology and the explosive growth of data, a large amount of spatial data is outsourced to the cloud server for reducing the local high storage and computing burdens, but at the same time causes security issues. Thus, extensive privacy-preserving spatial data query schemes have been proposed. Most of the existing schemes use Asymmetric Scalar-Product-Preserving Encryption (ASPE) to encrypt data, but ASPE has proven to be insecure against known plaintext attack. And the existing schemes require users to provide more information about query range and thus generate a large amount of ciphertexts, which causes …


Continual Learning, Fast And Slow, Quang Anh PHAM, Chenghao LIU, Steven C. H. HOI 2024 Singapore Management University

Continual Learning, Fast And Slow, Quang Anh Pham, Chenghao Liu, Steven C. H. Hoi

Research Collection School Of Computing and Information Systems

According to the Complementary Learning Systems (CLS) theory (McClelland et al. 1995) in neuroscience, humans do effective continual learning through two complementary systems: a fast learning system centered on the hippocampus for rapid learning of the specifics, individual experiences; and a slow learning system located in the neocortex for the gradual acquisition of structured knowledge about the environment. Motivated by this theory, we propose DualNets (for Dual Networks), a general continual learning framework comprising a fast learning system for supervised learning of pattern-separated representation from specific tasks and a slow learning system for representation learning of task-agnostic general representation via …


The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan McGovern 2024 Analytical Mechanics Associates

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia 2023 Brigham Young University

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk 2023 Virginia Commonwealth University

Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk

Critical Humanities

For Lacan, guilt arises in the sublimation of ab-sens (non-sense) into the symbolic comprehension of sen-absexe (sense without sex, sense in the deficiency of sexual relation), or in the maturation of language to sensibility through the effacement of sex. Though, as Slavoj Žižek himself points out in a recent article regarding ChatGPT, the split subject always misapprehends the true reason for guilt’s manifestation, such guilt at best provides a sort of evidence for the inclusion of the subject in the order of language, acting as a necessary, even enjoyable mark of the subject’s coherence (or, more importantly, the subject’s separation …


On The Hardness Of The Balanced Connected Subgraph Problem For Families Of Regular Graphs, Harsharaj Pathak 2023 Indian Institute of Technology Hyderabad

On The Hardness Of The Balanced Connected Subgraph Problem For Families Of Regular Graphs, Harsharaj Pathak

Theory and Applications of Graphs

The Balanced Connected Subgraph problem (BCS) was introduced by Bhore et al. In the BCS problem we are given a vertex-colored graph G = (V, E) where each vertex is colored “red” or “blue”. The goal is to find a maximum cardinality induced connected subgraph H of G such that H contains an equal number of red and blue vertices. This problem is known to be NP-hard for general graphs as well as many special classes of graphs. In this work we explore the time complexity of the BCS problem in case of regular graphs. We prove that the BCS …


The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson 2023 William & Mary

The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson

Cybersecurity Undergraduate Research Showcase

The RSA encryption algorithm has secured many large systems, including bank systems, data encryption in emails, several online transactions, etc. Benefiting from the use of asymmetric cryptography and properties of number theory, RSA was widely regarded as one of most difficult algorithms to decrypt without a key, especially since by brute force, breaking the algorithm would take thousands of years. However, in recent times, research has shown that RSA is getting closer to being efficiently decrypted classically, using algebraic methods, (fully cracked through limited bits) in which elliptic-curve cryptography has been thought of as the alternative that is stronger than …


Hypothyroid Disease Analysis By Using Machine Learning, SANJANA SEELAM 2023 California State University, San Bernardino

Hypothyroid Disease Analysis By Using Machine Learning, Sanjana Seelam

Electronic Theses, Projects, and Dissertations

Thyroid illness frequently manifests as hypothyroidism. It is evident that people with hypothyroidism are primarily female. Because the majority of people are unaware of the illness, it is quickly becoming more serious. It is crucial to catch it early on so that medical professionals can treat it more effectively and prevent it from getting worse. Machine learning illness prediction is a challenging task. Disease prediction is aided greatly by machine learning. Once more, unique feature selection strategies have made the process of disease assumption and prediction easier. To properly monitor and cure this illness, accurate detection is essential. In order …


Index Bucketing: A Novel Approach To Manipulating Data Structures, Jeffrey Myers 2023 Western Kentucky University

Index Bucketing: A Novel Approach To Manipulating Data Structures, Jeffrey Myers

Masters Theses & Specialist Projects

Handling nested data collections in large-scale distributed systems poses considerable challenges in query processing, often resulting in substantial costs and error susceptibility. While substantial efforts have been directed toward overcoming computation hurdles in querying vast data collections within relational databases, scant attention has been devoted to the manipulation and flattening procedures necessary for unnesting these data collections. Flattening operations, integral to unnesting, frequently yield copious duplicate data and entail a loss of information, devoid of mechanisms for reconstructing the original structure. These challenges exacerbate in scenarios involving skewed, nested data with irregular inner data collections. Processing such data demands an …


A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu 2023 East Tennessee State University

A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu

Electronic Theses and Dissertations

Graph Neural Networks and Transformers are very powerful frameworks for learning machine learning tasks. While they were evolved separately in diverse fields, current research has revealed some similarities and links between them. This work focuses on bridging the gap between GNNs and Transformers by offering a uniform framework that highlights their similarities and distinctions. We perform positional encodings and identify key properties that make the positional encodings node embeddings. We found that the properties of expressiveness, efficiency and interpretability were achieved in the process. We saw that it is possible to use positional encodings as node embeddings, which can be …


Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto 2023 Chapman University

Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto

Computational and Data Sciences (PhD) Dissertations

This dissertation aims to extend the boundaries of Programming Computable Functions (PCF) by introducing a novel collection of categories referred to as Random Variable Spaces. Originating as a generalization of Quasi-Borel Spaces, Random Variable Spaces are rigorously defined as categories where objects are sets paired with a collection of random variables from an underlying measurable space. These spaces offer a theoretical foundation for extending PCF to natively handle stochastic elements.

The dissertation is structured into seven chapters that provide a multi-disciplinary background, from PCF and Measure Theory to Category Theory with special attention to Monads and the Giry Monad. The …


Integrating Ai Into Uavs, Huong Quach 2023 Old Dominion University

Integrating Ai Into Uavs, Huong Quach

Cybersecurity Undergraduate Research Showcase

This research project explores the application of Deep Learning (DL) techniques, specifically Convolutional Neural Networks (CNNs), to develop a smoke detection algorithm for deployment on mobile platforms, such as drones and self-driving vehicles. The project focuses on enhancing the decision-making capabilities of these platforms in emergency response situations. The methodology involves three phases: algorithm development, algorithm implementation, and testing and optimization. The developed CNN model, based on ResNet50 architecture, is trained on a dataset of fire, smoke, and neutral images obtained from the web. The algorithm is implemented on the Jetson Nano platform to provide responsive support for first responders. …


Developing Detection And Mapping Of Roads Within Various Forms Of Media Using Opencv, Jordan C. Lyle 2023 University of Arkansas Fayetteville

Developing Detection And Mapping Of Roads Within Various Forms Of Media Using Opencv, Jordan C. Lyle

Computer Science and Computer Engineering Undergraduate Honors Theses

OpenCV, and Computer Vision in general, has been a Computer Science topic that has interested me for a long time while completing my Bachelor’s degree at the University of Arkansas. As a result of this, I ended up choosing to utilize OpenCV in order to complete the task of detecting road-lines and mapping roads when given a wide variety of images. The purpose of my Honors research and this thesis is to detail the process of creating an algorithm to detect the road-lines such that the results are effective and instantaneous, as well as detail how Computer Vision can be …


Digital Commons powered by bepress