Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

2,019 Full-Text Articles 3,269 Authors 739,530 Downloads 164 Institutions

All Articles in Theory and Algorithms

Faceted Search

2,019 full-text articles. Page 2 of 84.

Learning Optimal Inter-Class Margin Adaptively For Few-Shot Class-Incremental Learning Via Neural Collapse-Based Meta-Learning, Hang Ran, Weijun Li, Lusi Li, Songsong Tian, Xin Ning, Prayag Tiwari 2024 Chinese Academy of Sciences

Learning Optimal Inter-Class Margin Adaptively For Few-Shot Class-Incremental Learning Via Neural Collapse-Based Meta-Learning, Hang Ran, Weijun Li, Lusi Li, Songsong Tian, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Few-Shot Class-Incremental Learning (FSCIL) aims to learn new classes incrementally with a limited number of samples per class. It faces issues of forgetting previously learned classes and overfitting on few-shot classes. An efficient strategy is to learn features that are discriminative in both base and incremental sessions. Current methods improve discriminability by manually designing inter-class margins based on empirical observations, which can be suboptimal. The emerging Neural Collapse (NC) theory provides a theoretically optimal inter-class margin for classification, serving as a basis for adaptively computing the margin. Yet, it is designed for closed, balanced data, not for sequential or few-shot …


Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian GUO, Zhi HE, Wenda SHENG, Zhiguang CAO, Yingjie ZHOU, Weinan GAO 2024 Singapore Management University

Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao

Research Collection School Of Computing and Information Systems

This paper studies the problem in transportation networks and introduces a novel reinforcement learning-based algorithm, namely. Different from almost all canonical sota solutions, which are usually computationally expensive and lack generalizability to unforeseen destination nodes, segac offers the following appealing characteristics. segac updates the ego vehicle’s navigation policy in a sample efficient manner, reduces the variance of both value network and policy network during training, and is automatically adaptive to new destinations. Furthermore, the pre-trained segac policy network enables its real-time decision-making ability within seconds, outperforming state-of-the-art sota algorithms in simulations across various transportation networks. We also successfully deploy segac …


Dl-Drl: A Double-Level Deep Reinforcement Learning Approach For Large-Scale Task Scheduling Of Multi-Uav, Xiao MAO, Guohua WU, Mingfeng FAN, Zhiguang CAO, Witold PEDRYCZ 2024 Singapore Management University

Dl-Drl: A Double-Level Deep Reinforcement Learning Approach For Large-Scale Task Scheduling Of Multi-Uav, Xiao Mao, Guohua Wu, Mingfeng Fan, Zhiguang Cao, Witold Pedrycz

Research Collection School Of Computing and Information Systems

Exploiting unmanned aerial vehicles (UAVs) to execute tasks is gaining growing popularity recently. To address the underlying task scheduling problem, conventional exact and heuristic algorithms encounter challenges such as rapidly increasing computation time and heavy reliance on domain knowledge, particularly when dealing with large-scale problems. The deep reinforcement learning (DRL) based methods that learn useful patterns from massive data demonstrate notable advantages. However, their decision space will become prohibitively huge as the problem scales up, thus deteriorating the computation efficiency. To alleviate this issue, we propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework …


Active Discovering New Slots For Task-Oriented Conversation, Yuxia WU, Tianhao DAI, Zhedong ZHENG, Lizi LIAO 2024 Singapore Management University

Active Discovering New Slots For Task-Oriented Conversation, Yuxia Wu, Tianhao Dai, Zhedong Zheng, Lizi Liao

Research Collection School Of Computing and Information Systems

Existing task-oriented conversational systems heavily rely on domain ontologies with pre-defined slots and candidate values. In practical settings, these prerequisites are hard to meet, due to the emerging new user requirements and ever-changing scenarios. To mitigate these issues for better interaction performance, there are efforts working towards detecting out-of-vocabulary values or discovering new slots under unsupervised or semi-supervised learning paradigms. However, overemphasizing on the conversation data patterns alone induces these methods to yield noisy and arbitrary slot results. To facilitate the pragmatic utility, real-world systems tend to provide a stringent amount of human labeling quota, which offers an authoritative way …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia 2023 Brigham Young University

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk 2023 Virginia Commonwealth University

Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk

Critical Humanities

For Lacan, guilt arises in the sublimation of ab-sens (non-sense) into the symbolic comprehension of sen-absexe (sense without sex, sense in the deficiency of sexual relation), or in the maturation of language to sensibility through the effacement of sex. Though, as Slavoj Žižek himself points out in a recent article regarding ChatGPT, the split subject always misapprehends the true reason for guilt’s manifestation, such guilt at best provides a sort of evidence for the inclusion of the subject in the order of language, acting as a necessary, even enjoyable mark of the subject’s coherence (or, more importantly, the subject’s separation …


Deep Learning Uncertainty Quantification For Clinical Text Classification, Alina Peluso, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, Eric B. Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Linda Coyle, Lynne Penberthy, Georgia D. Tourassi, Shang Gao 2023 Oak Ridge National Laboratory, Oak Ridge, TN

Deep Learning Uncertainty Quantification For Clinical Text Classification, Alina Peluso, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, Eric B. Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Linda Coyle, Lynne Penberthy, Georgia D. Tourassi, Shang Gao

School of Public Health Faculty Publications

INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National …


On The Hardness Of The Balanced Connected Subgraph Problem For Families Of Regular Graphs, Harsharaj Pathak 2023 Indian Institute of Technology Hyderabad

On The Hardness Of The Balanced Connected Subgraph Problem For Families Of Regular Graphs, Harsharaj Pathak

Theory and Applications of Graphs

The Balanced Connected Subgraph problem (BCS) was introduced by Bhore et al. In the BCS problem we are given a vertex-colored graph G = (V, E) where each vertex is colored “red” or “blue”. The goal is to find a maximum cardinality induced connected subgraph H of G such that H contains an equal number of red and blue vertices. This problem is known to be NP-hard for general graphs as well as many special classes of graphs. In this work we explore the time complexity of the BCS problem in case of regular graphs. We prove that the BCS …


The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson 2023 William & Mary

The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson

Cybersecurity Undergraduate Research Showcase

The RSA encryption algorithm has secured many large systems, including bank systems, data encryption in emails, several online transactions, etc. Benefiting from the use of asymmetric cryptography and properties of number theory, RSA was widely regarded as one of most difficult algorithms to decrypt without a key, especially since by brute force, breaking the algorithm would take thousands of years. However, in recent times, research has shown that RSA is getting closer to being efficiently decrypted classically, using algebraic methods, (fully cracked through limited bits) in which elliptic-curve cryptography has been thought of as the alternative that is stronger than …


A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu 2023 East Tennessee State University

A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu

Electronic Theses and Dissertations

Graph Neural Networks and Transformers are very powerful frameworks for learning machine learning tasks. While they were evolved separately in diverse fields, current research has revealed some similarities and links between them. This work focuses on bridging the gap between GNNs and Transformers by offering a uniform framework that highlights their similarities and distinctions. We perform positional encodings and identify key properties that make the positional encodings node embeddings. We found that the properties of expressiveness, efficiency and interpretability were achieved in the process. We saw that it is possible to use positional encodings as node embeddings, which can be …


Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto 2023 Chapman University

Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto

Computational and Data Sciences (PhD) Dissertations

This dissertation aims to extend the boundaries of Programming Computable Functions (PCF) by introducing a novel collection of categories referred to as Random Variable Spaces. Originating as a generalization of Quasi-Borel Spaces, Random Variable Spaces are rigorously defined as categories where objects are sets paired with a collection of random variables from an underlying measurable space. These spaces offer a theoretical foundation for extending PCF to natively handle stochastic elements.

The dissertation is structured into seven chapters that provide a multi-disciplinary background, from PCF and Measure Theory to Category Theory with special attention to Monads and the Giry Monad. The …


Integrating Ai Into Uavs, Huong Quach 2023 Old Dominion University

Integrating Ai Into Uavs, Huong Quach

Cybersecurity Undergraduate Research Showcase

This research project explores the application of Deep Learning (DL) techniques, specifically Convolutional Neural Networks (CNNs), to develop a smoke detection algorithm for deployment on mobile platforms, such as drones and self-driving vehicles. The project focuses on enhancing the decision-making capabilities of these platforms in emergency response situations. The methodology involves three phases: algorithm development, algorithm implementation, and testing and optimization. The developed CNN model, based on ResNet50 architecture, is trained on a dataset of fire, smoke, and neutral images obtained from the web. The algorithm is implemented on the Jetson Nano platform to provide responsive support for first responders. …


Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury 2023 California Polytechnic State University, San Luis Obispo

Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury

Master's Theses

A central problem in neuroscience is to understand how memories are formed as a result of the activities of neurons. Valiant’s neuroidal model attempted to address this question by modeling the brain as a random graph and memories as subgraphs within that graph. However the question of memory capacity within that model has not been explored: how many memories can the brain hold? Valiant introduced the concept of interference between memories as the defining factor for capacity; excessive interference signals the model has reached capacity. Since then, exploration of capacity has been limited, but recent investigations have delved into the …


Developing Detection And Mapping Of Roads Within Various Forms Of Media Using Opencv, Jordan C. Lyle 2023 University of Arkansas Fayetteville

Developing Detection And Mapping Of Roads Within Various Forms Of Media Using Opencv, Jordan C. Lyle

Computer Science and Computer Engineering Undergraduate Honors Theses

OpenCV, and Computer Vision in general, has been a Computer Science topic that has interested me for a long time while completing my Bachelor’s degree at the University of Arkansas. As a result of this, I ended up choosing to utilize OpenCV in order to complete the task of detecting road-lines and mapping roads when given a wide variety of images. The purpose of my Honors research and this thesis is to detail the process of creating an algorithm to detect the road-lines such that the results are effective and instantaneous, as well as detail how Computer Vision can be …


Towards Long-Term Fairness In Sequential Decision Making, Yaowei Hu 2023 University of Arkansas-Fayetteville

Towards Long-Term Fairness In Sequential Decision Making, Yaowei Hu

Graduate Theses and Dissertations

With the development of artificial intelligence, automated decision-making systems are increasingly integrated into various applications, such as hiring, loans, education, recommendation systems, and more. These machine learning algorithms are expected to facilitate faster, more accurate, and impartial decision-making compared to human judgments. Nevertheless, these expectations are not always met in practice due to biased training data, leading to discriminatory outcomes. In contemporary society, countering discrimination has become a consensus among people, leading the EU and the US to enact laws and regulations that prohibit discrimination based on factors such as gender, age, race, and religion. Consequently, addressing algorithmic discrimination has …


Index Bucketing: A Novel Approach To Manipulating Data Structures, Jeffrey Myers 2023 Western Kentucky University

Index Bucketing: A Novel Approach To Manipulating Data Structures, Jeffrey Myers

Masters Theses & Specialist Projects

Handling nested data collections in large-scale distributed systems poses considerable challenges in query processing, often resulting in substantial costs and error susceptibility. While substantial efforts have been directed toward overcoming computation hurdles in querying vast data collections within relational databases, scant attention has been devoted to the manipulation and flattening procedures necessary for unnesting these data collections. Flattening operations, integral to unnesting, frequently yield copious duplicate data and entail a loss of information, devoid of mechanisms for reconstructing the original structure. These challenges exacerbate in scenarios involving skewed, nested data with irregular inner data collections. Processing such data demands an …


Neural Airport Ground Handling, Yaoxin WU, Jianan ZHOU, Yunwen XIA, Xianli ZHANG, Zhiguang CAO, Jie ZHANG 2023 Eindhoven University of Technology

Neural Airport Ground Handling, Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang

Research Collection School Of Computing and Information Systems

Airport ground handling (AGH) offers necessary operations to flights during their turnarounds and is of great importance to the efficiency of airport management and the economics of aviation. Such a problem involves the interplay among the operations that leads to NP-hard problems with complex constraints. Hence, existing methods for AGH are usually designed with massive domain knowledge but still fail to yield high-quality solutions efficiently. In this paper, we aim to enhance the solution quality and computation efficiency for solving AGH. Particularly, we first model AGH as a multiple-fleet vehicle routing problem (VRP) with miscellaneous constraints including precedence, time windows, …


C³: Code Clone-Based Identification Of Duplicated Components, Yanming YANG, Ying ZOU, Xing HU, David LO, Chao NI, John C. GRUNDY, Xin: XIA 2023 Singapore Management University

C³: Code Clone-Based Identification Of Duplicated Components, Yanming Yang, Ying Zou, Xing Hu, David Lo, Chao Ni, John C. Grundy, Xin: Xia

Research Collection School Of Computing and Information Systems

Reinventing the wheel is a detrimental programming practice in software development that frequently results in the introduction of duplicated components. This practice not only leads to increased maintenance and labor costs but also poses a higher risk of propagating bugs throughout the system. Despite numerous issues introduced by duplicated components in software, the identification of component-level clones remains a significant challenge that existing studies struggle to effectively tackle. Specifically, existing methods face two primary limitations that are challenging to overcome: 1) Measuring the similarity between different components presents a challenge due to the significant size differences among them; 2) Identifying …


Robust Test Selection For Deep Neural Networks, Weifeng SUN, Meng YAN, Zhongxin LIU, David LO 2023 Chongqing University

Robust Test Selection For Deep Neural Networks, Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely used in various domains, such as computer vision and software engineering. Although many DNNs have been deployed to assist various tasks in the real world, similar to traditional software, they also suffer from defects that may lead to severe outcomes. DNN testing is one of the most widely used methods to ensure the quality of DNNs. Such method needs rich test inputs with oracle information (expected output) to reveal the incorrect behaviors of a DNN model. However, manually labeling all the collected test inputs is a labor-intensive task, which delays the quality assurance …


Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi WU, Shangqing LIU, Xiao YANG, Zhiming LI, Jun SUN, Shang-Wei LIN 2023 Singapore Management University

Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi Wu, Shangqing Liu, Xiao Yang, Zhiming Li, Jun Sun, Shang-Wei Lin

Research Collection School Of Computing and Information Systems

Learning-based approaches that learn code representations for software vulnerability detection have been proven to produce inspiring results. However, they still fail to capture complete and precise vulnerability semantics for code representations. To address the limitations, in this work, we propose a learning-based approach namely SnapVuln, which first utilizes multiple vulnerability-specific inter-procedural slicing algorithms to capture vulnerability semantics of various types and then employs a Gated Graph Neural Network (GGNN) with an attention mechanism to learn vulnerability semantics. We compare SnapVuln with state-of-the-art learning-based approaches on two public datasets, and confirm that SnapVuln outperforms them. We further perform an ablation study …


Digital Commons powered by bepress