Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 2022

Full-Text Articles in Theory and Algorithms

An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko May 2024

An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko

Research Collection School Of Computing and Information Systems

The home-refill delivery system is a business model that addresses the concerns of plastic waste and its impact on the environment. It allows customers to pick up their household goods at their doorsteps and refill them into their own containers. However, the difficulty in accessing customers’ locations and product consolidations are undeniable challenges. To overcome these issues, we introduce a new variant of the Profitable Tour Problem, named the multi-vehicle profitable tour problem with flexible compartments and mandatory customers (MVPTPFC-MC). The objective is to maximize the difference between the total collected profit and the traveling cost. We model the proposed …


Techniques To Detect Fake Profiles On Social Media Using The New Age Algorithms – A Survey, A K M Rubaiyat Reza Habib, Edidiong Elijah Akpan Apr 2024

Techniques To Detect Fake Profiles On Social Media Using The New Age Algorithms – A Survey, A K M Rubaiyat Reza Habib, Edidiong Elijah Akpan

ATU Research Symposium

This research explores the growing issue of fake accounts in Online Social Networks [OSNs]. While platforms like Twitter, Instagram, and Facebook foster connections, their lax authentication measures have attracted many scammers and cybercriminals. Fake profiles conduct malicious activities, such as phishing, spreading misinformation, and inciting social discord. The consequences range from cyberbullying to deceptive commercial practices. Detecting fake profiles manually is often challenging and causes considerable stress and trust issues for the users. Typically, a social media user scrutinizes various elements like the profile picture, bio, and shared posts to identify fake profiles. These evaluations sometimes lead users to conclude …


Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng Apr 2024

Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng

Research Collection School Of Computing and Information Systems

The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a simple yet effective framework with unified contrastive transfer learning, to detect rumors by adapting the features learned from well-resourced rumor data to that …


Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami Mar 2024

Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami

Undergraduate Research Symposium

Students in juvenile detention centers have the greatest need to receive improvements in educational delivery and content; however, they are one of the “truly disadvantaged” populations in terms of receiving those improvements. This work presents a qualitative data analysis based on a focus group meeting with stakeholders at a local Juvenile Detention Center. The current educational system in juvenile detention centers is based on paper worksheets, single-room style teaching methods, outdated technology, and a shortage of textbooks and teachers. In addition, detained students typically have behavioral challenges that are deemed "undesired" in society. As a result, many students miss classes …


Automated Identification And Mapping Of Interesting Mineral Spectra In Crism Images, Arun M. Saranathan Mar 2024

Automated Identification And Mapping Of Interesting Mineral Spectra In Crism Images, Arun M. Saranathan

Doctoral Dissertations

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has proven to be an invaluable tool for the mineralogical analysis of the Martian surface. It has been crucial in identifying and mapping the spatial extents of various minerals. Primarily, the identification and mapping of these mineral spectral-shapes have been performed manually. Given the size of the CRISM image dataset, manual analysis of the full dataset would be arduous/infeasible. This dissertation attempts to address this issue by describing an (machine learning based) automated processing pipeline for CRISM data that can be used to identify and map the unique mineral signatures present in …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer Mar 2024

Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer

ELAIA

Asteroid detection is a common field in astronomy for planetary defense, requiring observations from survey telescopes to detect and classify different objects. The amount of data collected each night is continually increasing as new and better-designed telescopes begin collecting information each year. This amount of data is quickly becoming unmanageable, and researchers are looking for ways to better process this data. The most feasible current solution is to implement computer algorithms to automatically detect these sources and then use machine learning to create a more efficient and accurate method of classification. Implementation of such methods has previously focused on larger …


Wang Tilings In Arbitrary Dimensions, Ian Tassin Mar 2024

Wang Tilings In Arbitrary Dimensions, Ian Tassin

Rose-Hulman Undergraduate Mathematics Journal

This paper makes a new observation about arbitrary dimensional Wang Tilings,
demonstrating that any d -dimensional tile set that can tile periodically along d − 1 axes must be able to tile periodically along all axes.
This work also summarizes work on Wang Tiles up to the present day, including
definitions for various aspects of Wang Tilings such as periodicity and the validity of a tiling. Additionally, we extend the familiar 2D definitions for Wang Tiles and associated properties into arbitrary dimensional spaces. While there has been previous discussion of arbitrary dimensional Wang Tiles in other works, it has been …


A Machine Learning Model Of Perturb-Seq Data For Use In Space Flight Gene Expression Profile Analysis, Liam F. Johnson, James Casaletto, Lauren Sanders, Sylvain Costes Mar 2024

A Machine Learning Model Of Perturb-Seq Data For Use In Space Flight Gene Expression Profile Analysis, Liam F. Johnson, James Casaletto, Lauren Sanders, Sylvain Costes

Graduate Industrial Research Symposium

The genetic perturbations caused by spaceflight on biological systems tend to have a system-wide effect which is often difficult to deconvolute it into individual signals with specific points of origin. Single cell multi-omic data can provide a profile of the perturbational effects, but does not necessarily indicate the initial point of interference within the network. The objective of this project is to take advantage of large scale and genome-wide perturbational datasets by using them to train a tuned machine learning model that is capable of predicting the effects of unseen perturbations in new data. Perturb-Seq datasets are large libraries of …


Sepsis Treatment: Reinforced Sequential Decision-Making For Saving Lives, Dipesh Tamboli, Jiayu Chen, Kiran Pranesh Jotheeswaran, Denny Yu, Vaneet Aggarwal Mar 2024

Sepsis Treatment: Reinforced Sequential Decision-Making For Saving Lives, Dipesh Tamboli, Jiayu Chen, Kiran Pranesh Jotheeswaran, Denny Yu, Vaneet Aggarwal

Graduate Industrial Research Symposium

Sepsis, a life-threatening condition triggered by the body's exaggerated response to infection, demands urgent intervention to prevent severe complications. Existing machine learning methods for managing sepsis struggle in offline scenarios, exhibiting suboptimal performance with survival rates below 50%. Our project introduces the "PosNegDM: Reinforcement Learning with Positive and Negative Demonstrations for Sequential Decision-Making" framework utilizing an innovative transformer-based model and a feedback reinforcer to replicate expert actions while considering individual patient characteristics. A mortality classifier with 96.7% accuracy guides treatment decisions towards positive outcomes. The PosNegDM framework significantly improves patient survival, saving 97.39% of patients and outperforming established machine learning …


Online Class-Incremental Learning For Real-World Food Image Classification, Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu Mar 2024

Online Class-Incremental Learning For Real-World Food Image Classification, Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu

Graduate Industrial Research Symposium

Food image classification is essential for monitoring health and tracking dietary in image-based dietary assessment methods. However, conventional systems often rely on static datasets with fixed classes and uniform distribution. In contrast, real-world food consumption patterns, shaped by cultural, economic, and personal influences, involve dynamic and evolving data. Thus, it requires the classification system to cope with continuously evolving data. Online Class Incremental Learning (OCIL) addresses the challenge of learning continuously from a single-pass data stream while adapting to the new knowledge and reducing catastrophic forgetting. Experience Replay (ER) based OCIL methods store a small portion of previous data and …


Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao Mar 2024

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao

Research Collection School Of Computing and Information Systems

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one hand, different from previous works, which carefully insert one token between two words per action, we insert …


Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu Mar 2024

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu

Research Collection School Of Computing and Information Systems

Existing neural heuristics for multiobjective vehicle routing problems (MOVRPs) are primarily conditioned on instance context, which failed to appropriately exploit preference and problem size, thus holding back the performance. To thoroughly unleash the potential, we propose a novel conditional neural heuristic (CNH) that fully leverages the instance context, preference, and size with an encoder–decoder structured policy network. Particularly, in our CNH, we design a dual-attention-based encoder to relate preferences and instance contexts, so as to better capture their joint effect on approximating the exact Pareto front (PF). We also design a size-aware decoder based on the sinusoidal encoding to explicitly …


Music Genre Classification Capabilities Of Enhanced Neural Network Architectures, Joshua Engelkes Feb 2024

Music Genre Classification Capabilities Of Enhanced Neural Network Architectures, Joshua Engelkes

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal

With the increase of digital music audio uploads, applications that deal with music information have been widely requested by streaming platforms. Automatic music genre classification is an important function of music recommendation and music search applications. Since the music genre categorization criteria continually shift, data-driven methods such as neural networks have been proven especially useful to music information retrieval. An enhanced CNN architecture, the Bottom-up Broadcast Neural Network, uses mel-spectrograms to push music data through a network where important low-level information is preserved. An enhanced RNN architecture, the Independent Recurrent Neural Network for Music Genre Classification, takes advantage of the …


Imitate The Good And Avoid The Bad: An Incremental Approach To Safe Reinforcement Learning, Minh Huy Hoang, Mai Anh Tien, Pradeep Varakantham Feb 2024

Imitate The Good And Avoid The Bad: An Incremental Approach To Safe Reinforcement Learning, Minh Huy Hoang, Mai Anh Tien, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

A popular framework for enforcing safe actions in Reinforcement Learning (RL) is Constrained RL, where trajectory based constraints on expected cost (or other cost measures) are employed to enforce safety and more importantly these constraints are enforced while maximizing expected reward. Most recent approaches for solving Constrained RL convert the trajectory based cost constraint into a surrogate problem that can be solved using minor modifications to RL methods. A key drawback with such approaches is an over or underestimation of the cost constraint at each state. Therefore, we provide an approach that does not modify the trajectory based cost constraint …


Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft Feb 2024

Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft

Research Collection School Of Computing and Information Systems

Relevance-based ranking is a popular ingredient in recommenders, but it frequently struggles to meet fairness criteria because social and cultural norms may favor some item groups over others. For instance, some items might receive lower ratings due to some sort of bias (e.g. gender bias). A fair ranking should balance the exposure of items from advantaged and disadvantaged groups. To this end, we propose a novel post-processing framework to produce fair, exposure-aware recommendations. Our approach is based on an integer linear programming model maximizing the expected utility while satisfying a minimum exposure constraint. The model has fewer variables than previous …


The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern Jan 2024

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


Abmscore: A Heuristic Algorithm For Forming Strategic Coalitions In Agent-Based Simulation, Andrew J. Collins, Gayane Grigoryan Jan 2024

Abmscore: A Heuristic Algorithm For Forming Strategic Coalitions In Agent-Based Simulation, Andrew J. Collins, Gayane Grigoryan

Engineering Management & Systems Engineering Faculty Publications

Integrating human behavior into agent-based models has been challenging due to its diversity. An example is strategic coalition formation, which occurs when an individual decides to collaborate with others because it strategically benefits them, thereby increasing the expected utility of the situation. An algorithm called ABMSCORE was developed to help model strategic coalition formation in agent-based models. The ABMSCORE algorithm employs hedonic games from cooperative game theory and has been applied to various situations, including refugee egress and smallholder farming cooperatives. This paper discusses ABMSCORE, including its mechanism, requirements, limitations, and application. To demonstrate the potential of ABMSCORE, a new …


Continual Learning, Fast And Slow, Quang Anh Pham, Chenghao Liu, Steven C. H. Hoi Jan 2024

Continual Learning, Fast And Slow, Quang Anh Pham, Chenghao Liu, Steven C. H. Hoi

Research Collection School Of Computing and Information Systems

According to the Complementary Learning Systems (CLS) theory (McClelland et al. 1995) in neuroscience, humans do effective continual learning through two complementary systems: a fast learning system centered on the hippocampus for rapid learning of the specifics, individual experiences; and a slow learning system located in the neocortex for the gradual acquisition of structured knowledge about the environment. Motivated by this theory, we propose DualNets (for Dual Networks), a general continual learning framework comprising a fast learning system for supervised learning of pattern-separated representation from specific tasks and a slow learning system for representation learning of task-agnostic general representation via …


Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White Jan 2024

Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White

Physics Faculty Publications

Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the …


A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu Jan 2024

A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu

Computer Science Faculty Publications

The construction of knowledge graph is beneficial for grid production, electrical safety protection, fault diagnosis and traceability in an observable and controllable way. Highly-precision text classification algorithm is crucial to build a professional knowledge graph in power system. Unfortunately, there are a large number of poorly described and specialized texts in the power business system, and the amount of data containing valid labels in these texts is low. This will bring great challenges to improve the precision of text classification models. To offset the gap, we propose a classification algorithm for Chinese text in the power system based on deep …


Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner Jan 2024

Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner

Dissertations, Master's Theses and Master's Reports

The unifying theme of this thesis is the characterization of “perfect randomness,” i.e., independent and identically distributed (IID) stochastic processes as these are applied in physical science. Two specific and mathematically distinct applications are chosen: (i) Radar and optical polarimetry; (ii) Analysis of time series in meteorology. In (i), IID process of a special kind, namely, with a distribution defined by symmetry, is used to link its multivariate Gaussian density to uniformity on the Poincaré sphere. This “statistical ellipsometry” approach is then used to relate polarimetric mismatches or imbalances to ellipsometric variables and suitably chosen cross-correlation measures. In (ii), recently …


Learning Optimal Inter-Class Margin Adaptively For Few-Shot Class-Incremental Learning Via Neural Collapse-Based Meta-Learning, Hang Ran, Weijun Li, Lusi Li, Songsong Tian, Xin Ning, Prayag Tiwari Jan 2024

Learning Optimal Inter-Class Margin Adaptively For Few-Shot Class-Incremental Learning Via Neural Collapse-Based Meta-Learning, Hang Ran, Weijun Li, Lusi Li, Songsong Tian, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Few-Shot Class-Incremental Learning (FSCIL) aims to learn new classes incrementally with a limited number of samples per class. It faces issues of forgetting previously learned classes and overfitting on few-shot classes. An efficient strategy is to learn features that are discriminative in both base and incremental sessions. Current methods improve discriminability by manually designing inter-class margins based on empirical observations, which can be suboptimal. The emerging Neural Collapse (NC) theory provides a theoretically optimal inter-class margin for classification, serving as a basis for adaptively computing the margin. Yet, it is designed for closed, balanced data, not for sequential or few-shot …


Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao Jan 2024

Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao

Research Collection School Of Computing and Information Systems

This paper studies the problem in transportation networks and introduces a novel reinforcement learning-based algorithm, namely. Different from almost all canonical sota solutions, which are usually computationally expensive and lack generalizability to unforeseen destination nodes, segac offers the following appealing characteristics. segac updates the ego vehicle’s navigation policy in a sample efficient manner, reduces the variance of both value network and policy network during training, and is automatically adaptive to new destinations. Furthermore, the pre-trained segac policy network enables its real-time decision-making ability within seconds, outperforming state-of-the-art sota algorithms in simulations across various transportation networks. We also successfully deploy segac …


Dl-Drl: A Double-Level Deep Reinforcement Learning Approach For Large-Scale Task Scheduling Of Multi-Uav, Xiao Mao, Guohua Wu, Mingfeng Fan, Zhiguang Cao, Witold Pedrycz Jan 2024

Dl-Drl: A Double-Level Deep Reinforcement Learning Approach For Large-Scale Task Scheduling Of Multi-Uav, Xiao Mao, Guohua Wu, Mingfeng Fan, Zhiguang Cao, Witold Pedrycz

Research Collection School Of Computing and Information Systems

Exploiting unmanned aerial vehicles (UAVs) to execute tasks is gaining growing popularity recently. To address the underlying task scheduling problem, conventional exact and heuristic algorithms encounter challenges such as rapidly increasing computation time and heavy reliance on domain knowledge, particularly when dealing with large-scale problems. The deep reinforcement learning (DRL) based methods that learn useful patterns from massive data demonstrate notable advantages. However, their decision space will become prohibitively huge as the problem scales up, thus deteriorating the computation efficiency. To alleviate this issue, we propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework …


Efficient Privacy-Preserving Spatial Data Query In Cloud Computing, Yinbin Miao, Yutao Yang, Xinghua Li, Linfeng Wei, Zhiquan Liu, Robert H. Deng Jan 2024

Efficient Privacy-Preserving Spatial Data Query In Cloud Computing, Yinbin Miao, Yutao Yang, Xinghua Li, Linfeng Wei, Zhiquan Liu, Robert H. Deng

Research Collection School Of Computing and Information Systems

With the rapid development of geographic location technology and the explosive growth of data, a large amount of spatial data is outsourced to the cloud server for reducing the local high storage and computing burdens, but at the same time causes security issues. Thus, extensive privacy-preserving spatial data query schemes have been proposed. Most of the existing schemes use Asymmetric Scalar-Product-Preserving Encryption (ASPE) to encrypt data, but ASPE has proven to be insecure against known plaintext attack. And the existing schemes require users to provide more information about query range and thus generate a large amount of ciphertexts, which causes …


Active Discovering New Slots For Task-Oriented Conversation, Yuxia Wu, Tianhao Dai, Zhedong Zheng, Lizi Liao Jan 2024

Active Discovering New Slots For Task-Oriented Conversation, Yuxia Wu, Tianhao Dai, Zhedong Zheng, Lizi Liao

Research Collection School Of Computing and Information Systems

Existing task-oriented conversational systems heavily rely on domain ontologies with pre-defined slots and candidate values. In practical settings, these prerequisites are hard to meet, due to the emerging new user requirements and ever-changing scenarios. To mitigate these issues for better interaction performance, there are efforts working towards detecting out-of-vocabulary values or discovering new slots under unsupervised or semi-supervised learning paradigms. However, overemphasizing on the conversation data patterns alone induces these methods to yield noisy and arbitrary slot results. To facilitate the pragmatic utility, real-world systems tend to provide a stringent amount of human labeling quota, which offers an authoritative way …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk Dec 2023

Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk

Critical Humanities

For Lacan, guilt arises in the sublimation of ab-sens (non-sense) into the symbolic comprehension of sen-absexe (sense without sex, sense in the deficiency of sexual relation), or in the maturation of language to sensibility through the effacement of sex. Though, as Slavoj Žižek himself points out in a recent article regarding ChatGPT, the split subject always misapprehends the true reason for guilt’s manifestation, such guilt at best provides a sort of evidence for the inclusion of the subject in the order of language, acting as a necessary, even enjoyable mark of the subject’s coherence (or, more importantly, the subject’s separation …


Deep Learning Uncertainty Quantification For Clinical Text Classification, Alina Peluso, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, Eric B. Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Linda Coyle, Lynne Penberthy, Georgia D. Tourassi, Shang Gao Dec 2023

Deep Learning Uncertainty Quantification For Clinical Text Classification, Alina Peluso, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, Eric B. Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Linda Coyle, Lynne Penberthy, Georgia D. Tourassi, Shang Gao

School of Public Health Faculty Publications

INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National …