Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 31 - 60 of 833

Full-Text Articles in Nanoscience and Nanotechnology

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the envelope in pairing ...


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers ...


Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia Dec 2018

Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia

Theses and Dissertations

The high exciton binding energy in one dimensional (1D) nano-structures makes them prominent for optoelectronic device applications, making it relevant to theoretically investigate their electronic and optical properties. Many-body effects that are not captured by the conventional density functional theory (DFT) have a huge impact in such selenium and tellurium single helical atomic chains. This work goes one step beyond DFT to include the electron self-energy effects within the GW approximation to obtain a corrected quasi-particle electronic structure. Further, the Bethe-Salpeter equation was solved to obtain the absorption spectrum and to capture excitonic effects. Results were obtained using the Hyberstein-Louie ...


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste ...


Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant Dec 2018

Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant

Theses and Dissertations

Group IV photonics is an effort to generate viable infrared optoelectronic devices using group IV materials. Si-based optoelectronics have received monumental research since Si is the heart of the electronics industry propelling our data driven world. Silicon however, is an indirect material whose optical characteristics are poor compared to other III-IV semiconductors that make up the optoelectronics industry. There have been major efforts to integrate III-V materials onto Si substrates. Great progress on the integration of these III-V materials has occurred but incompatibility with CMOS processing has presented great difficulty in this process becoming a viable and cost-effective solution. Germanium ...


Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli Nov 2018

Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli

Master's Theses

Titanium-Aluminum alloys are one of the widely used alloys in multiple engineering applications. They are highly preferred in Selective Laser Melting (SLM) processes due to their low density, high melting temperature, and good strength. Segregation occurs during the solidification of most alloys and produces a non-uniform distribution of atoms. In SLM, segregation may depict the type of adhesion between the two deposited interfacial layers and the strength between the interphase between an already solidified layer and a new one, and overall, the quality of the printed part. In order to avoid segregation, the understanding of the segregation behavior at atomistic ...


Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan Nov 2018

Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan

Doctoral Dissertations

The electrical characterization on two-dimensional carbon-based graphene and nanodiamond materials was performed to improve charge transport properties for the label-free electrical biosensors. The charge transport in solution-gated graphene devices is affected by the impurities and disorders of the underlying dielectric interface and its interaction with the electrolytes. Advancement in field-effect ion sensing by introducing a dielectric isomorph, hexagonal boron nitride between graphene and silicon dioxide of a solution-gated graphene field-effect transistor was investigated. Increased transconductance due to increased charge carrier mobility is accompanied with larger ionic sensitivity. These findings define a standard to construct future graphene devices for biosensing and ...


Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden Nov 2018

Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden

Doctoral Dissertations

The U.S. produces 5559.6 million metric tons of carbon dioxide annually, of which 21% is produced by industrial processes. Steam reforming, an industrial process that accounts for 95% of all hydrogen production in industry, produces 134.5 million metric tons of carbon dioxide or around 11% of the total carbon dioxide produced by industry. This carbon dioxide is then either emitted or goes through a sequestration process that accounts for 75% of the plant's operational costs. An alternative reaction to steam reforming is dry reforming, which utilizes carbon dioxide rather than emitting it and can be used ...


Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai Nov 2018

Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai

Doctoral Dissertations

Recently, there has been a growing interest in flexible electronic devices as they are light, highly flexible, robust, and use less expensive substrate materials. Such devices are affected by thermal management issues that can reduce the device’s performance and reliability. Therefore, this work is focused on the study of the thermal properties of nanomaterials and the methods to address such issues. The goal is to enhance the effective thermal conductivity by adding nanomaterials to the polymer matrix or by structural modification of nanomaterials. The thermal conductivity of copper nanowire/polydimethylsiloxane and copper nanowire/polyurethane composites were measured and showed ...


Scalable, Biofunctional, Ultra-Stable Nano- Bio- Composite Materials Containing Living Cells, Patrick E. Johnson, C. Jeffrey Brinker, Graham Timmins, Jacob Agola, Jason Harper Nov 2018

Scalable, Biofunctional, Ultra-Stable Nano- Bio- Composite Materials Containing Living Cells, Patrick E. Johnson, C. Jeffrey Brinker, Graham Timmins, Jacob Agola, Jason Harper

Nanoscience and Microsystems ETDs

Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines. It also allows study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes for large format production of cell-encapsulating materials. Here, we detail two novel techniques, that enable the large-scale production of functional Nano-Bio-Composites (NBCs) containing living cells within ordered 3-D lipid/silica nanostructures: 1) thick-casting and 2) spray drying. Furthermore, we detail a third technique for material scaling in which aqueous ...


Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen Nov 2018

Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen

Chemical and Biological Engineering ETDs

With the increasing demand on renewable energy, the fuel cell has attracted more and more interests because of its large power density and controllable size. However, the insufficiency of element abundance and unstable expensive price of conventional platinum-based electrocatalysts used in anode and cathode makes it essential to find their substitutes. As one of the most promising candidates to be used in cathode for oxygen reduction reaction (ORR), iron-nitrogen-carbon (Fe-N-C) catalysts have been widely investigated and get commercialized recently, but still lacks comprehensive understanding on the kinetic mechanism.

This dissertation has been divided into three parts with a discussion on ...


Carbon-Supported Transition Metal Nanoparticles For Catalytic And Electromagnetic Applications, Kavita Meduri Nov 2018

Carbon-Supported Transition Metal Nanoparticles For Catalytic And Electromagnetic Applications, Kavita Meduri

Dissertations and Theses

Recently, there has been growing interest in using transition metals (TM) for catalytic and electromagnetic applications, due to the ability of TMs to form stable compounds in multiple oxidation states. In this research, the focus has been on the synthesis and characterization of carbon-supported TM nanoparticles (NPs), specifically palladium (Pd) and gold (Au) NPs, for catalytic applications, and transition metal oxides (TMO) NPs, specifically Fe3O4 NPs for electromagnetic applications. Carbon supports have several advantages, such as enabling even distribution of particles, offering large specific surface area with excellent electron conductivity, and relative chemical inertness.

In this dissertation ...


Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu Nov 2018

Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu

LSU Doctoral Dissertations

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large-scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high ...


Electrocatalysts With High Activity And Stability For Polymer Electrolyte Membrane Fuel Cells, Zhongxin Song Sep 2018

Electrocatalysts With High Activity And Stability For Polymer Electrolyte Membrane Fuel Cells, Zhongxin Song

Electronic Thesis and Dissertation Repository

In addressing the activity and durability challenges facing electrocatalysts in polymer electrolyte membrane fuel cells (PEMFCs), atomic layer deposition (ALD) is emerging as a powerful technique for deposition of noble metals and transition metal oxides due to its exclusive advantages over other methods. The primary advantages of ALD are derived from the sequential, self-saturating, gas-surface reactions, and angstrom level control that take place during the deposition process. Therefore, ALD possesses the advantage in precisely control the particle size and uniform distribution on the substrate. By forming chemical bonds between the initial layer of ALD precursor and support atoms during the ...


Synthesis And Drop-On-Demand Deposition Of Graphene Derivative Inks For Flexible Thin Film Electronics, Dogan M. Sinar Aug 2018

Synthesis And Drop-On-Demand Deposition Of Graphene Derivative Inks For Flexible Thin Film Electronics, Dogan M. Sinar

Electronic Thesis and Dissertation Repository

This dissertation presents methods for deposition and post-processing of Graphene-Carboxymethyl Cellulose (G-CMC) and Graphene Oxide (GO) aqueous functional inks using a custom drop-on-demand (DOD) printer to fabricate mechanically flexible, non-transparent and transparent thin film electronic devices. Thin films on flexible substrates find use in lightweight, low profile, and conformable electronic devices. Such devices can include chemical sensors, flexible RFID tags, bioelectronics circuits, lightweight electronics for space systems, and transparent electrodes for optoelectronic systems. The goal of this research project is to provide simple methods for fabrication of these devices using environmentally friendly and easy to synthesize functional inks. Therefore, two ...


Development And Evaluation Of Biocompatible Engineered Nanoparticles For Use In Ophthalmology, Bedia Begum Karakocak Aug 2018

Development And Evaluation Of Biocompatible Engineered Nanoparticles For Use In Ophthalmology, Bedia Begum Karakocak

Engineering and Applied Science Theses & Dissertations

The synthesis and design of biocompatible nanoparticles for targeted drug delivery and bioimaging requires knowledge of both their potential toxicity and their transport. For both practical and ethical reasons, evaluating exposure via cell studies is a logical precursor to in vivo tests. As a step towards clinical trials, this work extensively investigated the toxicity of gold nanoparticles (Au NPs) and carbon dot (CD) nanoparticles as a prelude to their in vivo application, focusing specifically on ocular cells. As a further step, it also evaluated their whole-body transport in mice. The research pursued two approaches in assessing the toxicity of engineered ...


Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian Aug 2018

Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian

MSU Graduate Theses

Two different morphologies (pseudo-spherical shaped or PS type and hexagonal nanoplate shaped or NP type) and two different concentrations (0.07 M and 0.1 M) of manganese incorporated Co3O4@MnxCo3-xO4 core-shell nanoparticles (CSNs) were investigated, respectively. The motivation of this work is to investigate the magnetic properties of, and specifically the exchange bias, between different shaped CSNs and between different Mn-doped CSNs. A two-step synthesis method was utilized to obtain the CSNs: a soft chemical approach was used to obtain Co3O4 nanoparticles and a hydrothermal nano-phase epitaxy was ...


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable ...


Investigation Of The Acoustic Response Of A Confined Mesoscopic Water Film Utilizing A Combined Atomic Force Microscope And Shear Force Microscope Technique, Monte Allen Kozell Jul 2018

Investigation Of The Acoustic Response Of A Confined Mesoscopic Water Film Utilizing A Combined Atomic Force Microscope And Shear Force Microscope Technique, Monte Allen Kozell

Dissertations and Theses

An atomic force microscopy beam-like cantilever is combined with an electrical tuning fork to form a shear force probe that is capable of generating an acoustic response from the mesoscopic water layer under ambient conditions while simultaneously monitoring force applied in the normal direction and the electrical response of the tuning fork shear force probe. Two shear force probes were designed and fabricated. A gallium ion beam was used to deposit carbon as a probe material. The carbon probe material was characterized using energy dispersive x-ray spectroscopy and scanning transmission electron microscopy. The probes were experimentally validated by demonstrating the ...


Tissue-Engineered Vascular Grafts: Recellularisation And Surface Functionalisation With Hybrid Magnetic Nanomedicine Developed With Theranostic Potential, Tatiane Eufrásio Da Silva Jul 2018

Tissue-Engineered Vascular Grafts: Recellularisation And Surface Functionalisation With Hybrid Magnetic Nanomedicine Developed With Theranostic Potential, Tatiane Eufrásio Da Silva

PhD theses

Cardiovascular Disease is the number one cause of death in the world, with a mortality rate, globally of 35.1% representing 17.6 million lives lost annually. The majority of these deaths are related to vascular diseases, such as atherosclerotic plaques, which can obstruct blood flow perfusion of organs and tissue causing serious injuries or even death. In the heart, in order to prevent heart failure, blood flow to the tissue must be restored as quickly as possible, ideally via minimally invasive interventions such as stenting or other types of angioplasty as the gold standard. However, this is not always ...


The Effectiveness Of Localized Ultrasound And Aptamer Surface Modification On Nanoemulsions For Drug Delivery To Spheroids., Daniel A. Hodge Jul 2018

The Effectiveness Of Localized Ultrasound And Aptamer Surface Modification On Nanoemulsions For Drug Delivery To Spheroids., Daniel A. Hodge

Electronic Theses and Dissertations

Cancer is a group of diseases that affects 1.6 million and kills nearly 600,000 Americans each year. The National Cancer Institute defines it as “diseases in which abnormal cells divide without control and can invade nearby tissues” and it is often treated with one or more of the following: chemotherapy, radiation, surgery. The expense for these treatments is expected to rise to $156 billion by 2020. Localized delivery can improve effectiveness and cancer survival rates, decrease the cost of treatment, and decrease the side effects of chemotherapy. This paper addresses models for this localized delivery through nanoemulsions. Nanoemulsions ...


A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer Jun 2018

A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer

Graduate Theses and Dissertations

Respiratory Syncytial Virus (RSV) is a potentially life-threatening respiratory pathogen that infects approximately 64 million children and immunocompromised adults globally per year. Currently, there is a need for prophylactic and therapeutic approaches effective against primary and secondary RSV infections. This project focuses on the development of a simple, smart, and scalable anti-RSV nanotherapeutic that combines novel cellular antiviral defense mechanisms targeting the inhibition of viral fusion and replication. An ICAM-1 targeted liposomal nanocarrier will be synthesized and coated with a layer of chitosan containing the anti-fusion HR2-D peptide as an extracellular defense mechanism. Additionally, chitosan complexed to dual expressing short ...


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex ...


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som May 2018

Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som

Engineering and Applied Science Theses & Dissertations

Enormous progress has been made to treat cancer, and yet the mortality rate of cancer remains unacceptably high. High clinical resistance to molecularly targeted therapeutics has pushed interest again towards inhibiting universal biochemical hallmarks of cancer. Recent evidence suggests that malignant tumors acidify the local extracellular environment to activate proteases for degrading the tumor matrix, which facilitates metastasis, and explains why more aggressive tumors are more acidic. Current therapies have only focused on using the low pH for enhancing drug release in tumors, thereby still relying on the traditional paradigm of intracellular inhibition of pathways, a method that continues to ...


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation ...


Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo May 2018

Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo

Theses and Dissertations

To meet the rapidly growing demand for energy and reduce the use of dwindling fossil fuels, the efficient utilization of renewable energy is a constant pursuit globally. Because solar cells convert vastly available sunlight into electricity, developing high-performance and low-cost solar cells is a top strategy for future energy supply. Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are the most promising choices. In the meantime, highly concentrated sulfuric acids from retired lead-acid batteries become an environmental concern, and lead contamination in drinking water raises concerns in general public. This study addresses both above-mentioned problems by using two-dimensional (2D ...


Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical ...


Degradation Of Orange G Through Persulfate Activated Nanoscale Zerovalent Iron Composites And Boron-Doped Diamond Electrodes, Suzana Ivandic May 2018

Degradation Of Orange G Through Persulfate Activated Nanoscale Zerovalent Iron Composites And Boron-Doped Diamond Electrodes, Suzana Ivandic

Chemical Engineering Undergraduate Honors Theses

Properly treated wastewater is necessary for water reuse and to avoid unnecessary impacts on the environment. The poultry industry utilizes large amounts of water for poultry processing. The need for innovative ways to treat organic contaminants in the poultry wastewater industry is especially necessary due to increased poultry consumption. The U.S. Department of Agriculture projected Americans would consume approximately 92 pounds of chicken per person in 2017.1 Dissolved air flotation (DAF) is currently used in poultry wastewater treatment, but DAF does not remove organic contaminants efficiently per effluent standards. Implementation of processes that degrade contaminants directly would benefit ...


Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert May 2018

Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert

Mechanical Engineering Undergraduate Honors Theses

Graphene functionalized with platinum (Pt) and palladium (Pd) has proven to be highly effective as a hydrogen sensor. Deposition methods such as Atomic layer deposition (ALD) can be further enhanced by pretreating the graphene with a non-covalent surfactant prior to nanoparticle deposition. In this study, graphene-based sensing devices will be fabricated by ALD deposition. The graphene will be non-covalently functionalized using sodium dodecyl sulfate (SDS) anionic surfactant prior to ALD deposition. The aim of this study is to test the deposition pattern achieved by varying the amount of time that graphene is treated with the SDS surfactant. Initially, ALD deposition ...