Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Theses and Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 66

Full-Text Articles in Nanoscience and Nanotechnology

Two-Dimensional Nanomaterials And Nanocomposites For Sensing, Separation, And Energy Applications, Md Ashiqur Rahman Aug 2023

Two-Dimensional Nanomaterials And Nanocomposites For Sensing, Separation, And Energy Applications, Md Ashiqur Rahman

Theses and Dissertations

Two-dimension (2D) nanomaterials have gained popularity for the last few decades due to their excellent mechanical, electrical and thermal properties. These unique properties of 2D nanomaterials can be exploited in various applications specially in sensor, energy, and separation devices. In this study, the sensing and energy generation performance of PVDF/PAni fiber mat systems made by the forcespinning method with and without graphene coating. The graphene-coated nanocomposites show an average output voltage of 75 mV (peak-to-peak) which is 300% higher compared to bare fiber mats and an output current of 24 mA (peak-to-peak) by gentle finger pressing. Moreover, the graphene-coated PVDF/PAni …


From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen May 2023

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin Jan 2023

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Novel Development Of A Low-Cost, Micrometer-Scale Tip-Enhanced Raman Spectroscopy System, John Yates Jan 2023

Novel Development Of A Low-Cost, Micrometer-Scale Tip-Enhanced Raman Spectroscopy System, John Yates

Theses and Dissertations

Modern scientific instruments are significant capital investments for universities. These investments can be outside of the funding capabilities of some smaller universities or departments and can be a significant barrier in the pursuit of scientific breakthroughs. This project aims to provide a template for universities or research groups to upgrade, at a reasonable price, an existing Raman spectroscopy system to a Tip-Enhanced Raman Spectroscopy (TERS) system. This system can serve as a permanent upgrade to an existing system or as a bridge necessary to prove the viability of a research path before significant capital investment in a commercial TERS system. …


Properties Of Titanium Dioxide Nanoparticles Aquesous Dispersions Stabilized By Anionic Surfactants, Anita Vuchkovska Aug 2022

Properties Of Titanium Dioxide Nanoparticles Aquesous Dispersions Stabilized By Anionic Surfactants, Anita Vuchkovska

Theses and Dissertations

The stability of titanium dioxide nanoparticles dispersed in aqueous solutions with and without anionic surfactants was investigated as a function of phase separation (sedimentation), particle size at the age of 33 and 303 days, polydispersity at 33 and 303 days, and zeta potential. Mechanical energy in the form of homogenization or mixing with propeller blade mixer was used to wet out the titanium dioxide (TiO2) nanoparticles in the aqueous media and this process was evaluated for the capability of developing a stable dispersion. The ultrasonic waves were used as a second step to form stable dispersions. The research results indicated …


Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley Jun 2022

Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley

Theses and Dissertations

The inherent chemical, mechanical, and structural properties of nucleic acids make them ideal candidates for the formulation of tunable, personalized drug nanocarriers. However, none so far have exploited these properties for the controlled release of therapeutic drugs. In this dissertation, a biomimetic approach to controlling drug release is exhibited by specifically manipulating the architecture of novel, DNA nanoparticles to take advantage of drug binding mechanisms of action. Rationally designed DNA strands were immobilized on gold surfaces via a terminal thiol modification. Immobilized monomers can be manipulated to form distinct monolayer architectures including flat, folded, coiled, or stretched structures. Increasing the …


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Towards Environmental Sustainability Of Nanotechnology Through Improved Evaluations Of Impact And Risk To Aquatic Species: Cross-Species Comparisons From The Laboratory And Environmentally Realistic Exposure Scenarios In The Field, Becky J. Curtis May 2022

Towards Environmental Sustainability Of Nanotechnology Through Improved Evaluations Of Impact And Risk To Aquatic Species: Cross-Species Comparisons From The Laboratory And Environmentally Realistic Exposure Scenarios In The Field, Becky J. Curtis

Theses and Dissertations

Engineered nanomaterials (ENMs) are utilized in a wide variety of applications and products, including everything from toothpaste and personal care products to industries such as aerospace, defense, medicine, electronics, and agriculture. Depending on the application, release of ENMs to the environment may occur through both unintentional and deliberate routes. High surface-area-to-volume ratios make ENMs more volatile than bulk counterparts, and their small size allows translocation within biological systems that would not be possible with larger materials. These and other characteristics make ENM-biological system interactions unpredictable, creating uncertainty about their potential risks to environmental health. The purpose of this research is …


Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain May 2022

Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain

Theses and Dissertations

Near-field scanning optical microscopy (NSOM) merges scanning probe technology with the power of high-resolution optical microscopy and provides a natural view into the nanoworld. NSOM requires tapered probes with subwavelength optical apertures and wide cone angles to efficiently channel the illumination light to the tip apex so that it can acquire optical images beyond the diffraction limit. Tapered probes with a range of cone angles can be fabricated through chemical etching of optical fibers using hydrofluoric acid (HF) by varying the etching time. Apart from their use for NSOM imaging, such optical probes can also be transformed into nanosensors by …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Transport, Photoluminescence & Photoconduction Characteristics Of Free Standing Two-Dimensional Γ-Alumina & Titanium Superlattice Doped Two-Dimensional Γ-Alumina Grown By Graphene-Assisted Atomic Layer Deposition, Elaheh Kheirandish Aug 2021

Transport, Photoluminescence & Photoconduction Characteristics Of Free Standing Two-Dimensional Γ-Alumina & Titanium Superlattice Doped Two-Dimensional Γ-Alumina Grown By Graphene-Assisted Atomic Layer Deposition, Elaheh Kheirandish

Theses and Dissertations

This study presents a facile high-yield bottom-up fabrication, morphology, crystallographic and optoelectronic characterization of free-standing quasi-2D γ-alumina, a non van der Waals 2D material. The synthesis comprises a multi-cycle atomic layer deposition (ALD) of amorphous alumina on a porous interconnected graphene foam as a growth scaffold and removed next by annealing and sintering the alumina/graphene/alumina sandwich at ~ 800 °C in air . The crystallographic and structural characteristics of the formed non-van der Waals quasi 2D γ-alumina were studied by X-ray diffraction (XRD), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). This analysis revealed the synthesized 2D …


Investigating Mechanisms Of Nanotoxicity Of A Next-Generation Lithium Cobalt Oxide Nanomaterial, Nicholas Joseph Niemuth May 2021

Investigating Mechanisms Of Nanotoxicity Of A Next-Generation Lithium Cobalt Oxide Nanomaterial, Nicholas Joseph Niemuth

Theses and Dissertations

Commercial use of engineered nanomaterials (ENMs; materials in the range of 1-100 nm) has grown dramatically since the discovery of the means to observe, characterize, and controllably synthesize these materials at the end of the 20th century. Today, ENMs represent a global market valued in the trillions of dollars, incorporated into products because of the unique properties they confer, including increased strength, catalytic activity, and interactions with light. In this time, ENMs have also grown from relatively simple first-generation materials, such as Au, Ag, and carbon ENMs, to complex next-generation materials incorporating numerous elements into materials with complex secondary structures, …


Exploration Of Antimicrobial And Cell Proliferation Properties Of Nanofibers Incorporating Nopal (O. Cochenillifera) Extract, Cristobal Rodriguez May 2021

Exploration Of Antimicrobial And Cell Proliferation Properties Of Nanofibers Incorporating Nopal (O. Cochenillifera) Extract, Cristobal Rodriguez

Theses and Dissertations

This study focused on the fabrication of Forcespinning® nanofibers composed of Opuntia cochenillifera, ‘nopal’, mucilage (N) extract, chitosan (CH), and pullulan (PL) (N/CH/PL) were developed with an optimum fiber average diameter of 406±127 nm, and studied for their ability to sustain adhesion and proliferation of mouse embryonic fibroblast (NIH 3T3) cells. After a 6-day incubation period, N/CH/PL nanofibers displayed robust cell proliferation, while also exhibiting inhibitory properties through an N extract dip-coating process against gram-negative bacteria Escherichia coli in a 24 h bacterial growth study. A demonstration of integrated natural bioactive compounds with combined biodegradable polymers, provide an enhanced …


Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey Mar 2021

Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey

Theses and Dissertations

The transverse modulus of single strand carbon fibers is measured using PeakForce Atomic Force Microscopy - Quantitative Nanomechanical Measurement to less than 5 percent error for 11 types of carbon fiber with longitudinal moduli between 924-231 GPA, including export-controlled fibers. Statistical methods are employed to improve the quality of data to exclude outliers within an measurement and within the sample set. A positive linear correlation between the longitudinal and transverse modulus with an R2=0.76 is found. Pitch-based fibers exhibit lower measurement error than PAN-based fibers, while PAN fibers exhibited no apparent modulus correlation when the Pitch fibers are …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Laser Induced Thermal Degradation Of Carbon Fiber-Carbon Nanotube Hybrid Laminates, Joshua A. Key Mar 2020

Laser Induced Thermal Degradation Of Carbon Fiber-Carbon Nanotube Hybrid Laminates, Joshua A. Key

Theses and Dissertations

Recent advancements in fiber laser technology have increased interest in target material interactions and the development of thermal protection layers for tactical laser defense. A significant material of interest is carbon fiber reinforced polymers due to their increased use in aircraft construction. In this work, the thermal response of carbon fiber-carbon nanotube (CNT) hybrid composites exposed to average irradiances of 0.87-6.8 W/cm2 were observed using a FLIR sc6900 thermal camera. The camera had a pixel resolution of 640x512 which resulted in a spatial resolution of 0.394x0.383 mm/pixel for the front and 0.463x0.491 mm/pixel for the back. The hybrid samples …


Mechanical And Structural Behavior Of As-Built And Post Treated Ti6al4v Lattice Structures Fabricated By Selective Laser Melting (Slm), Hala Ahmed Salem Jan 2020

Mechanical And Structural Behavior Of As-Built And Post Treated Ti6al4v Lattice Structures Fabricated By Selective Laser Melting (Slm), Hala Ahmed Salem

Theses and Dissertations

Lattice structure is a type of cellular structures that is composed of repeatable unit cells, each of which is formed of interconnect network of struts. Lattices with different structures are gaining attention for their good mechanical properties for light weight applications. Selective laser melting (SLM), is one of the AM powder-bed fusion fabrication techniques. SLM is widely known for its capability for fabricating complex metallic structures such as lattice structures with high resolution. SLM process influence the microstructure and mechanical properties of fabricated parts. The used processing parameters influence the level of internal porosity within the fabricated parts which directly …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya Jan 2020

Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya

Theses and Dissertations

To meet the ever-growing demand of faster and smaller computers, increasing number of transistors are needed in the same chip area. Unfortunately, Silicon based transistors have almost reached their miniaturization limits mainly due to excessive heat generation. Nanomagnetic devices are one of the most promising alternatives of CMOS. In nanomagnetic devices, electron spin, instead of charge, is the information carrier. Hence, these devices are non-volatile: information can be stored in these devices without needing any external power which could enable computing architectures beyond traditional von-Neumann computing. Additionally, these devices are also expected to be more energy efficient than CMOS devices …


Potential For On-Site, Prosecutorial Evidence From Drug Residues Collected On Plasmonic Paper: A Pilot Study For Sers-Psi-Ms, Daniel S. Burr Jul 2019

Potential For On-Site, Prosecutorial Evidence From Drug Residues Collected On Plasmonic Paper: A Pilot Study For Sers-Psi-Ms, Daniel S. Burr

Theses and Dissertations

Given the potential impact of improvements to on-site drug testing, as well as recent, successful displays of paper spray ionization mass spectrometry (PSI-MS) in this regard, this thesis pilots the implementation of Raman spectroscopy as a compliment to MS for field-based confirmatory drug testing. Surface enhanced Raman scattering (SERS) is utilized for applications to trace detection. Two-tiered analysis of individual drug samples is enabled using triangularly-cut plasmonic papers, from which both SERS and PS-MS analysis may be performed. Several drug compounds, representative of traditional and emerging drug types, are examined by these techniques, both separately and as a fully integrated, …


Electrochemical Modification Of Granular Activated Carbon And Carbon Nanofibers To Determine Effect On Adsorption, Jose E. Martinez Sanchez Mar 2019

Electrochemical Modification Of Granular Activated Carbon And Carbon Nanofibers To Determine Effect On Adsorption, Jose E. Martinez Sanchez

Theses and Dissertations

Granular activated carbon and carbon nanofiber samples were tested as is and electrochemically modified to determine the effect on adsorption. An electrochemical cell was used to modify the carbon samples. The samples were then used in bench bottle tests with 2,4-dinitrotoluene (DNT), brilliant blue (BB) dye, and methylene blue (MB) dye solutions and sampled over time intervals. An ultraviolet–visible spectrophotometer was used to analyze the results of the bottle bench tests. The results indicated that electrochemically modified coal-based carbons’ adsorption were improved 25% over the adsorption of the as is carbon samples prior to modification. The electrochemical modification increased adsorption …


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation …


Au@Tio2 Nanocomposites Synthesized By X-Ray Radiolysis As Potential Radiosensitizers, Maria C. Molina Higgins Jan 2019

Au@Tio2 Nanocomposites Synthesized By X-Ray Radiolysis As Potential Radiosensitizers, Maria C. Molina Higgins

Theses and Dissertations

Radiosensitization is a novel targeted therapy strategy where chemical compounds are being explored to enhance the sensitivity of the tissue to the effects of ionizing radiation. Among the different radiosensitizers alternatives, nanomaterials have shown promising results by enhancing tumor injury through the production of free radicals and reactive oxygen species (ROS). In this work, Gold-supported titania (Au@TiO2) nanocomposites were synthesized through an innovative strategy using X-ray irradiation, and their potential as radiosensitizers was investigated. Radiosensitization of Au@TiO2 nanocomposites was assessed by monitoring the decomposition of Methylene Blue (MB) under X-ray irradiation in the presence of the nanomaterial. …


Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe Jan 2019

Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe

Theses and Dissertations

We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the …


Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi Jan 2019

Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi

Theses and Dissertations

The differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. Designing the DMC requires knowledge of the geometrical and constructional imperfection (or tolerance). Studying the effects of geometrical imperfection on the performance of the DMC is necessary to provide manufacturing tolerance and it helps to predict the performance of geometrically imperfect classifiers, as well as providing a calibration curve for the DMC. This thesis was accomplished via studying the cylindrical classifier and the parallel plate classifier. The numerical model was built using the most recent versions of COMSOL Multiphysics® …


Engineering Magnetic Properties Of Nanoparticles For Biomedical Applications And Magnetic Thin Film Composite Heterostructures For Device Applications., Shivakumar Hunagund Jan 2019

Engineering Magnetic Properties Of Nanoparticles For Biomedical Applications And Magnetic Thin Film Composite Heterostructures For Device Applications., Shivakumar Hunagund

Theses and Dissertations

The motivation of this study is to investigate the size dependent properties of Gadolinium silicide nanoparticles and their potential applications in Biomedicine. We use two approaches in our investigation - size dependence and possible exchange interaction in a core-shell structure. Past results showed Gd5Si4 NPs exhibit significantly reduced echo time compared to superparamagnetic iron oxide nanoparticles (SPION) when measured in a 7 T magnetic resonance imaging (MRI) system. This indicates potential use of Gd5Si4 ferromagnetic nanoparticles as T2 contrast agents for MRI.

Until recently most contrast agents (CA) that are used in Magnetic Resonance …


Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo May 2018

Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo

Theses and Dissertations

To meet the rapidly growing demand for energy and reduce the use of dwindling fossil fuels, the efficient utilization of renewable energy is a constant pursuit globally. Because solar cells convert vastly available sunlight into electricity, developing high-performance and low-cost solar cells is a top strategy for future energy supply. Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are the most promising choices. In the meantime, highly concentrated sulfuric acids from retired lead-acid batteries become an environmental concern, and lead contamination in drinking water raises concerns in general public. This study addresses both above-mentioned problems by using two-dimensional (2D) …


Lanthanide-Based Core-Shell Nanoparticles As Multifunctional Platforms For Targeted Radionuclide Therapy And Multimodal Molecular Imaging, Miguel Toro-Gonzalez Jan 2018

Lanthanide-Based Core-Shell Nanoparticles As Multifunctional Platforms For Targeted Radionuclide Therapy And Multimodal Molecular Imaging, Miguel Toro-Gonzalez

Theses and Dissertations

Lanthanide phosphate (LnPO4) and lanthanide vanadate (LnVO4) nanoparticles (NPs) are promising platforms for theranostic applications because of their chemical stability, low solubility, low toxicity, and unique luminescence and magnetic properties. Motivated by the high radiation resistance and ability to host actinides of naturally occurring lanthanide-based compounds, LnPO4 and LnVO4 NPs were studied as radionuclide carriers for targeted radionuclide therapy using in vivoα-generators, 223Ra, 225Ac, and 227Th. The implementation of these radionuclides has shown potential for the treatment of micrometastases and solid tumors as well as challenges in the retention of …