Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Life Sciences

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 72

Full-Text Articles in Nanoscience and Nanotechnology

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

All Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The ...


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult ...


Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa Jan 2019

Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa

Open Access Theses & Dissertations

Nanotechnology has a great potential in ensuring food production, security and safety globally. Over the past decade, research on the use of nanomaterials to supply nutrient elements and protect plants from pest and diseases has significantly increased. Tomato (Solanum lycopersicum) is one of the most consumed vegetables in the world and United State is one of its largest producers globally generating billions of dollars annually in revenue.. Tomato plants are affected worldwide by Fusarium wilt caused by Fusarium oxysporum f. sp. Lycopersici. There is growing concern about excessive use of conventional pesticides in controlling Fusarium and other diseases in tomato ...


Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush Dec 2018

Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush

Nanoscience and Microsystems ETDs

As a cell mediated-process, valvular heart disease (VHD) results in significant morbidity and mortality world-wide. In the US alone, valvular heart disease VHD is estimated to affect 2.5% of the population with a disproportionate impact on an increasing elderly populous. It is well understood that the primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into an osteoblastic-like phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood and a more complete characterization of VIC differentiation and phenotypic change is required before treatment of valve disease ...


Development And Evaluation Of Biocompatible Engineered Nanoparticles For Use In Ophthalmology, Bedia Begum Karakocak Aug 2018

Development And Evaluation Of Biocompatible Engineered Nanoparticles For Use In Ophthalmology, Bedia Begum Karakocak

Engineering and Applied Science Theses & Dissertations

The synthesis and design of biocompatible nanoparticles for targeted drug delivery and bioimaging requires knowledge of both their potential toxicity and their transport. For both practical and ethical reasons, evaluating exposure via cell studies is a logical precursor to in vivo tests. As a step towards clinical trials, this work extensively investigated the toxicity of gold nanoparticles (Au NPs) and carbon dot (CD) nanoparticles as a prelude to their in vivo application, focusing specifically on ocular cells. As a further step, it also evaluated their whole-body transport in mice. The research pursued two approaches in assessing the toxicity of engineered ...


A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer Jun 2018

A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer

Graduate Theses and Dissertations

Respiratory Syncytial Virus (RSV) is a potentially life-threatening respiratory pathogen that infects approximately 64 million children and immunocompromised adults globally per year. Currently, there is a need for prophylactic and therapeutic approaches effective against primary and secondary RSV infections. This project focuses on the development of a simple, smart, and scalable anti-RSV nanotherapeutic that combines novel cellular antiviral defense mechanisms targeting the inhibition of viral fusion and replication. An ICAM-1 targeted liposomal nanocarrier will be synthesized and coated with a layer of chitosan containing the anti-fusion HR2-D peptide as an extracellular defense mechanism. Additionally, chitosan complexed to dual expressing short ...


State Dependent Function And Dynamics In Cerebral Cortical Networks, Leila Fakhraei May 2018

State Dependent Function And Dynamics In Cerebral Cortical Networks, Leila Fakhraei

Theses and Dissertations

Cerebral cortex exhibits vigorous ongoing, internal neural activity even with no sensory input is present or the animal is minimally engaged in a task or behavior. This internal ongoing activity is not static; the ‘cortical state’ varies ranging from synchronous and highly correlated activity to asynchronous and weakly correlated neural activity. The main goal of the work presented here is to understand how changes in cortical states effect several aspects of cortical function and dynamics.

To meet this goal, we did three separate projects. First, we compared the predictability of neuronal network dynamics across cortical states in somatosensory cortex of ...


Liquid Crystals Formed By Short Dna Oligomers And The Origin Of Life, Gregory Patrick Smith Jan 2018

Liquid Crystals Formed By Short Dna Oligomers And The Origin Of Life, Gregory Patrick Smith

Physics Graduate Theses & Dissertations

When dissolved in water, base paired DNA oligomers form double helices with sufficient structural rigidity that, if they are at high enough concentration, can undergo a phase transition into chiral nematic or hexagonal columnar liquid crystalline (LC) order. Within these LC phases, constrained orientation allows these rods to stack more efficiently by hydrophobic forces than they would otherwise, building them into long double helical aggregates that can be chemically glued together (ligated) to further increase their lengths. Even in absence of chemical ligation, this stacking effect is strong enough that short DNA oligomers, which are otherwise too short to form ...


Effects Of Unweathered Or Soil Weathered Copper-Based Nanoparticles And Compounds On Soil Grown Bell Pepper (Capsicum Annuum) And Spinach (Spinacia Oleracea) Plants, Swati Rawat Jan 2018

Effects Of Unweathered Or Soil Weathered Copper-Based Nanoparticles And Compounds On Soil Grown Bell Pepper (Capsicum Annuum) And Spinach (Spinacia Oleracea) Plants, Swati Rawat

Open Access Theses & Dissertations

Engineered nanoparticles (ENPs) find large scale industrial application because of their promising chemical, physical, electrical, magnetic, optical, and electronic properties. Copper-based ENP are used as gas sensors, in catalysts, electronics, semi-conductors, and in agriculture. They have been useful as agricultural amendments in the form of pesticides, herbicides, and fertilizers because of their antifungal and antibacterial properties. They also find application in electronics and sensors used in precision agriculture. Due to their massive production and use, ENPs are likely to be ubiquitous in the environment around us in the near future. Application of biosolids for fertilization and water from wastewater treatment ...


Surface And Structural Modification Of Carbon Electrodes For Electroanalysis And Electrochemical Conversion, Yan Zhang Jan 2018

Surface And Structural Modification Of Carbon Electrodes For Electroanalysis And Electrochemical Conversion, Yan Zhang

Theses and Dissertations--Chemistry

Electrocatalysis is key to both sensitive electrochemical sensing and efficient electrochemical energy conversion. Despite high catalytic activity, traditional metal catalysts have poor stability, low selectivity, and high cost. Metal-free, carbon-based materials are emerging as alternatives to metal-based catalysts because of their attractive features including natural abundance, environmental friendliness, high electrical conductivity, and large surface area. Altering surface functionalities and heteroatom doping are effective ways to promote catalytic performance of carbon-based catalysts. The first chapter of this dissertation focuses on developing electrode modification methods for electrochemical sensing of biomolecules. After electrochemical pretreatment, glassy carbon demonstrates impressive figures-of-merit in detecting small, redox-active ...


Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque Aug 2017

Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque

Theses and Dissertations

Silver (Ag) has been well known for its antimicrobial activity for a long time. Recent research showed the potential of Ag nanoparticles as emerging antimicrobial agents. However, little quantitative analysis has been performed so far to decipher the mechanism of interaction between nanoparticles and bacteria. Here, a detailed analysis based on kinetic growth assay and colony forming unit assay has been carried out to study the antimicrobial effect of Ag nanoparticles against Escherichia coli (E. coli) bacteria. It was observed that the presence of Ag nanoparticles increased the lag time of bacterial growth while not affecting the maximum growth rate ...


Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos Jan 2017

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos

Publicly Accessible Penn Dissertations

Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an ...


An Investigation Of The Mechanism Of Traumatic Brain Injury Caused By Blast In The Open Field, Ke Feng Jan 2017

An Investigation Of The Mechanism Of Traumatic Brain Injury Caused By Blast In The Open Field, Ke Feng

Wayne State University Dissertations

Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo, and the correlation analysis between the biomechanical responses and its injury outcomes. Such information is crucial to the development of injury criteria of bTBI.

This study aims to evaluate ...


Advances In Single Molecule Microscopy: Protein Characterization, Force Analysis And Fluorescence Localization, Chi-Fu Yen Jan 2017

Advances In Single Molecule Microscopy: Protein Characterization, Force Analysis And Fluorescence Localization, Chi-Fu Yen

Graduate Theses and Dissertations

Recent advances in single molecule techniques have allowed scientists to address biological questions which cannot be resolved by traditional ensemble measurements. In this dissertation, I integrate single molecule and bulk measurements to establish a direct link between copper exposure and neurotoxicity in prion disease. Furthermore, I develop a new analysis method to improve the accuracy of kinetic parameter estimation in single molecule Atomic Force Microscope (AFM) experiments. Finally, I develop a new fluorescence localization microscopy to identify the axial position of a single fluorescent object with sub-nanometer accuracy.

Prion diseases are characterized by the misfolding and oligomerization of prion protein ...


Characterization Of The Influence Of External Stimulus On Protein-Nucleic Acid Complex Through Multiscale Computations, Agnivo Gosai Jan 2017

Characterization Of The Influence Of External Stimulus On Protein-Nucleic Acid Complex Through Multiscale Computations, Agnivo Gosai

Graduate Theses and Dissertations

The concomitant detection, monitoring and analysis of biomolecules have assumed utmost importance in the field of medical diagnostics as well as in different spheres of biotechnology research such as drug development, environmental hazard detection and biodefense. There is an increased demand for the modulation of the biological response for such detection / sensing schemes which will be facilitated by the sensitive and controllable transmission of external stimuli. Electrostatic actuation for the controlled release/capture of biomolecules through conformational transformations of bioreceptors provides an efficient and feasible mechanism to modulate biological response. In addition, electrostatic actuation mechanism has the advantage of allowing ...


Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead Dec 2016

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead

Theses and Dissertations

The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks ...


A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu Dec 2016

A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu

Theses and Dissertations

This research focused on the application of electrochemical biosensors for the rapid detection of pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium, in foods. The possible presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food companies. Therefore, the demand for rapid and sensitive methods to detect foodborne pathogens is growing. In this research, an impedimetric immunosensor was first developed for the rapid detection of E. coli O157:H7 and S. Typhimurium in foods. It was based on the techniques of immunomagnetic separation, enzyme labelling, and electrochemical ...


Molybdenum Disulfide-Conducting Polymer Composite Structures For Electrochemical Biosensor Applications, Hongxiang Jia Nov 2016

Molybdenum Disulfide-Conducting Polymer Composite Structures For Electrochemical Biosensor Applications, Hongxiang Jia

Graduate Theses and Dissertations

Lactic acid is widely existing in human bodies, animals and microorganisms. Recently, using biosensor to detect the concentration of lactic acid and diagnose disease have attracted great research and development interests. Nanocomposites is one of the best material used for biosensor because their wonderful conductivity, optical and electrochemical properties. In the study, MoS2 and polypyrrole (PPY) are used for the composite material electrode. To determine whether lactate oxidase (LOD) was helpful for the biosensor’s detective properties, both PPY-MoS2 film with LOD and PPY-MoS2 film without LOD are being tested. The fourier transform infrared spectroscopy (FTIR) and ...


Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka Jul 2016

Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka

Doctoral Dissertations

Biomaterials are used as templates for drug delivery, scaffolds in tissue engineering, grafts in surgeries, and support for tissue regeneration. Novel biomaterial composites are needed to meet multifaceted requirements of compatibility, ease of fabrication and controlled drug delivery. Currently used biomaterials in orthopedics surgeries suffer limitations in toxicity and preventing infections. Polymethyl methacrylate (PMMA) used as bone cement suffers from limitations of thermal necrosis and monomer toxicity calls for development of better cementing biomaterials. A biodegradable/bioresorbable cement with good mechanical properties is needed to address this short coming. Metal implants used in fixing fractures or total joint replacement needs ...


The Change In Nutritional Status In Traumatic Brain Injury Patients: A Retrospective Descriptive A Retrospective Descriptive Study, Dina A. Masha'al Apr 2016

The Change In Nutritional Status In Traumatic Brain Injury Patients: A Retrospective Descriptive A Retrospective Descriptive Study, Dina A. Masha'al

Graduate Theses and Dissertations

There is a high prevalence in malnutrition among traumatic brain injury (TBI) due to the hypermetabolism and hypercatabolism which develop post injury. Traumatic brain injury patients are different, even among themselves, in their energy requirements and response to nutritional therapy. This implies that there are other factors that affect the energy intake of these patients and enhance the incidence of malnutrition.

This dissertation study examines the nutritional status of TBI patients upon admission to the intensive care unit (ICU) and during their hospital stay to describe baseline status, detect changes in nutritional status over 7 days, and identify the factors ...


Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer Apr 2016

Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer

Doctoral Dissertations

A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings.

This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper ...


Targeted Delivery Of Nrf2 Sirna Using Modular Polymeric Micellar Nanodelivery System For Efficient Target Gene Knockdown In Hepatocellular Carcinoma, Shaimaa Mohamed Ibrahim Yousef Jan 2016

Targeted Delivery Of Nrf2 Sirna Using Modular Polymeric Micellar Nanodelivery System For Efficient Target Gene Knockdown In Hepatocellular Carcinoma, Shaimaa Mohamed Ibrahim Yousef

Wayne State University Theses

Tumor selective drug delivery as well as chemotherapy associated multi drug resistance (MDR) pose tremendous hurdles for effective cancer therapy. In this regard, designing multifunctional nanocarriers loaded with drug/gene payloads and engineered with tumor targeting ligands can serve as a modular platform for targeted drug/gene delivery. In this study we undertook the synthesis of a self-assembling block copolymer constructed using poly(styrene-co-maleic anhydride, partial iso-octyl ester) (SMAPIE) and branched polyethylenimine (PEI) as building blocks and evaluated its micelle forming ability, siRNA complexation and siRNA delivery potentials. In addition, we engineered galactosamine decorated nanomicelles using modular “click” chemistry based ...


Quantum Dot Nanobioelectronics And Selective Antimicrobial Redox Interventions, Samuel Martin Goodman Jan 2016

Quantum Dot Nanobioelectronics And Selective Antimicrobial Redox Interventions, Samuel Martin Goodman

Chemical & Biological Engineering Graduate Theses & Dissertations

The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of ...


Size Specific Transfection To Mammalian Cells By Micropillar Array Electroporation, Yingbo Zu Jan 2016

Size Specific Transfection To Mammalian Cells By Micropillar Array Electroporation, Yingbo Zu

Doctoral Dissertations

Electroporation serves as a promising non-viral gene delivery approach, while its current configurations carry drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here, we developed a new micropillar array electroporation (MAE) platform to advance the delivery of plasmid DNA and RNA to mammalian cells. By introducing well-patterned micropillar array on the electrode surface, the number of pillars each cell faces varies with its cell membrane surface area, despite their large population and random locations. In this way, cell size specific electroporation is conveniently done and contributed to a 2.5~3 fold increase on plasmid DNA ...


Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins Jan 2016

Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins

Doctoral Dissertations

Van der Waals (vdW) interactions influence a variety of mesoscale phenomena, such as surface adhesion, friction, and colloid stability, and play increasingly important roles as science seeks to design systems on increasingly smaller length scales. Using the full Lifshitz continuum formulation, this thesis investigates the effects of system materials, shapes, and configurations and presents open-source software to accurately calculate vdW interactions.

In the Lifshitz formulation, the microscopic composition of a material is represented by its bulk dielectric response. Small changes in a dielectric response can result in substantial variations in the strength of vdW interactions. However, the relationship between these ...


Investigate The Interactions Between Silver Nanoparticles And Spinach Leaf By Surface Enhanced Raman Spectroscopic Mapping, Zhiyun Zhang Jan 2016

Investigate The Interactions Between Silver Nanoparticles And Spinach Leaf By Surface Enhanced Raman Spectroscopic Mapping, Zhiyun Zhang

Masters Theses

Owing to their increasing application and potential toxicity, engineered nanoparticles (ENPs) have been considered as a potential agricultural contaminant that may pose unknown risk to human beings. However, many techniques require invasive and complicated sample preparation procedures to detect and characterize engineered nanomaterials in complex matrices. In the first part of this thesis, we present a non-destructive and label-free approach based on surface enhanced Raman spectroscopic (SERS) mapping technique to qualitatively detect and characterize gold nanoparticles (AuNPs), on and in spinach leaves in situ. We were able to detect the clearly enhanced signals from AuNPs at 15 to 125 nm ...


Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang Jan 2016

Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang

Doctoral Dissertations

The development of analytical methods to detect food contaminants is a critical step for improving food safety. Surface enhanced Raman spectroscopy (SERS) is an emerging detection technology that has the potential to rapidly, accurately and sensitively detect a wide variety of food contaminants. However, SERS detection becomes a challenge in real complex matrix, such as food, since non-specific matrix signals have the potential to drown out target associated Raman peaks. In this dissertation, we focused on the development and application of label-free, aptamer-based SERS in order to improve the accuracy and specificity of target contaminant detection in food. To accomplish ...


Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur Jan 2016

Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur

Graduate Theses and Dissertations

Over the last thirty years, DNA has proven to be a great candidate for engineering nanoscale architectures. These DNA nanostructures have been applied in areas such as single-molecular analyses, nanopatterning, diagnostics and therapeutics. One of the most commonly-used techniques to engineer DNA-based two- and three-dimensional functional nanostructures is DNA origami, wherein a long single-stranded DNA (called scaffold) is folded into a predetermined shape with the help of a set of shorter oligonucleotides (called staples). This thesis discusses a brief overview of DNA nanotechnology (design, assembly and applications) and three primary projects undertaken in the area of dynamic self-assembling DNA nanosystems ...


An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker Jan 2016

An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker

Wayne State University Dissertations

Second cervical segment spinal cord hemisection (C2Hx) results in ipsilateral hemidiaphragm paralysis. However, the intact latent crossed phrenic pathway can restore function spontaneously over time or immediately following drug administration.

WGA bound fluorochromes were administered to identify nuclei associated with diaphragm function in both the acute and chronic C2Hx models. WGA is unique in that it undergoes receptor mediated endocytosis and is transsynaptically transported across select physiologically active synapses. Comparison of labeling in the acutely injured to the chronically injured rat provided an anatomical map of spinal and supraspinal injury induced synaptic plasticity. The plasticity occurs over time in the ...