Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Nanotechnology Fabrication

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 38

Full-Text Articles in Nanoscience and Nanotechnology

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation ...


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers ...


Tissue-Engineered Vascular Grafts: Recellularisation And Surface Functionalisation With Hybrid Magnetic Nanomedicine Developed With Theranostic Potential, Tatiane Eufrásio Da Silva Jul 2018

Tissue-Engineered Vascular Grafts: Recellularisation And Surface Functionalisation With Hybrid Magnetic Nanomedicine Developed With Theranostic Potential, Tatiane Eufrásio Da Silva

PhD theses

Cardiovascular Disease is the number one cause of death in the world, with a mortality rate, globally of 35.1% representing 17.6 million lives lost annually. The majority of these deaths are related to vascular diseases, such as atherosclerotic plaques, which can obstruct blood flow perfusion of organs and tissue causing serious injuries or even death. In the heart, in order to prevent heart failure, blood flow to the tissue must be restored as quickly as possible, ideally via minimally invasive interventions such as stenting or other types of angioplasty as the gold standard. However, this is not always ...


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal May 2018

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current ...


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Jan 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of ...


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading ...


Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta May 2017

Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta

Mechanical Engineering Undergraduate Honors Theses

Graphene is known to be a key material for improving the performance of hydrogen sensors. High electrical conductivity, maximum possible surface area with respect to volume, and high carrier mobility are a few of the properties that make graphene ideal for hydrogen sensing applications. The problem with utilizing graphene is the difficulty in depositing uniform, thin layers onto substrate surfaces. This study examines a new method of optimizing graphene deposition by utilizing an airbrush to deposit both graphene oxide (GO) and reduced graphene oxide (rGO) onto glass substrates. The number of depositions were varied among samples to study the effect ...


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted ...


Augmenting Mask-Based Lithography With Direct Laser Writing To Increase Resolution And Speed, Miles Patrick Lim Jan 2017

Augmenting Mask-Based Lithography With Direct Laser Writing To Increase Resolution And Speed, Miles Patrick Lim

Senior Projects Fall 2017

We present combined direct-laser-writing and UV Lithography in SU-8F and S1813 as a fast and flexible lithographic technique for the prototyping of functional polymer devices and pattern transfer applications. Direct laser writing (DLW), which is performed by focusing a laser through a microscope objective, is a useful alternative method for patterning photoresists with sub-micron resolution. DLW however, can be time consuming if the pattern density is high since it is a serial technique. Typically, dense patterns are made using conventional mask-based UV lithography, but these masks can be quite expensive if the resolution is high and the mask cannot be ...


Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat Jan 2017

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated ...


Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo Jan 2017

Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo

Theses and Dissertations

This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 µm) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film greatly ...


Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang Jan 2016

Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang

Dissertations, Master's Theses and Master's Reports

Solar photovoltaic (PV) devices harvest energy from solar radiation and convert it to electricity. PV technologies, as an alternative to traditional fossil fuels, use clean and renewable energy while minimizing pollution. For decades researchers have been developing thin film solar cells as an important alternatives to the relatively expensive bulk crystal solar cell technology. Among those, hydrogenated amorphous silicon (a-Si:H) solar cells prevails for good efficiency, non-toxic and materially abundant nature. However, a-Si:H thickness must be minimized to prevent light induced degradation, so optical enhancement is necessary. Light manipulation has to be applied and carefully engineered to trap ...


Hybrid Straintronics-Spintronics: Energy-Efficient Non-Volatile Devices For Boolean And Non-Boolean Computation, Ayan K. Biswas Jan 2016

Hybrid Straintronics-Spintronics: Energy-Efficient Non-Volatile Devices For Boolean And Non-Boolean Computation, Ayan K. Biswas

Theses and Dissertations

Research in future generation computing is focused on reducing energy dissipation while maintaining the switching speed in a binary operation to continue the current trend of increasing transistor-density according to Moore’s law. Unlike charge-based CMOS technology, spin-based nanomagnetic technology, based on switching bistable magnetization of single domain shape-anisotropic nanomagnets, has the potential to achieve ultralow energy dissipation due to the fact that no charge motion is directly involved in switching. However, switching of magnetization has not been any less dissipative than switching transistors because most magnet switching schemes involve generating a current to produce a magnetic field, or spin ...


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in ...


Epitaxial Growth Of Si-Ge-Sn Alloys For Optoelectronic Device Application, Aboozar Mosleh Dec 2015

Epitaxial Growth Of Si-Ge-Sn Alloys For Optoelectronic Device Application, Aboozar Mosleh

Theses and Dissertations

Microelectronics industry has experienced a tremendous change over the last few decades and has shown that Moore’s law has been followed by doubling the number of transistors on the chip every 18 months. However, continuous scaling down of the transistors size is reaching the physical limits and data transfer through metal interconnects will not be able to catch up with the increasing data processing speed in the future. Therefore, optical data transfer between chips and on-chip has been widely investigated. Silicon based optoelectronics has received phenomenal attention since Si has been the core material on which microelectronic industry has ...


Broadband High Efficiency Fractal-Like And Diverse Geometry Silicon Nanowire Arrays For Photovoltaic Applications, Omar Hassan Al-Zoubi Jul 2015

Broadband High Efficiency Fractal-Like And Diverse Geometry Silicon Nanowire Arrays For Photovoltaic Applications, Omar Hassan Al-Zoubi

Theses and Dissertations

Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been ...


Development Of Infrared And Terahertz Bolometers Based On Palladium And Carbon Nanotubes Using Roll To Roll Process, Amulya Gullapalli Jan 2015

Development Of Infrared And Terahertz Bolometers Based On Palladium And Carbon Nanotubes Using Roll To Roll Process, Amulya Gullapalli

Masters Theses

Terahertz region in the electromagnetic spectrum is the region between Infrared and Microwave. As the Terahertz region has both wave and particle nature, it is difficult to make a room temperature, fast, and sensitive detector in this region. In this work, we fabricated a Palladium based IR detector and a CNT based THz bolometer.

In Chapter 1, I give a brief introduction of the Terahertz region, the detectors already available in the market and different techniques I can use to test my detector. In Chapter 2, I explain about the Palladium IR bolometer, the fabrication technique I have used, and ...


Optical Resonators And Fiber Tapers As Transducers For Detection Of Nanoparticles And Bio-Molecules, Huzeyfe Yilmaz Aug 2014

Optical Resonators And Fiber Tapers As Transducers For Detection Of Nanoparticles And Bio-Molecules, Huzeyfe Yilmaz

Engineering and Applied Science Theses & Dissertations

In recent years, detection of biological interactions on single molecule level has aspired many researchers to investigate several optical, chemical, electrical and mechanical sensing tools. Among these tools, toroidal optical resonators lead the way in detection of the smallest particle/molecule with the real time measurements. In this work, bio-sensing capabilities of toroidal optical resonators are investigated. Bio-sensing is realized via measuring the analyte-antigen interaction while the antigen is immobilized through a novel functionalization method.

Not long ago, detection of single nanoparticles using optical resonators has been accomplished however the need for cost-effective and practical transducers demands simpler tools. A ...


Nanofabrication Of Metallic Nanostructures And Integration With Light Detection Devices, Liang Huang Aug 2014

Nanofabrication Of Metallic Nanostructures And Integration With Light Detection Devices, Liang Huang

Theses and Dissertations

Metallic nanostructures have been investigated with various applications especially for integration with light detection devices. The incident light can be manipulated by those nanostructures to enhance light absorption therefor improve device performance. However, previous studies focused on optical design. The electrical properties of these integrated light detection devices have not been fully considered. The photon generated carriers transport and collection are critical for light detection devices as well. An optimized device platform considering from both the optical and electrical aspects to fully utilize these nanostructures is highly desired for future light detection devices.

This dissertation targeted on three objectives, beginning ...


Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia Jun 2014

Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia

Electronic Thesis and Dissertation Repository

Surface plasmon resonance (SPR) sensing for quantitative analysis of chemical reactions and biological interactions has become one of the most promising applications of plasmonics. This thesis focuses on performance analysis for plasmonic sensors and implementation of plamonic optical sensors with novel nanofabrication techniques.

A universal performance analysis model is established for general two-dimensional plasmonic sensors. This model is based on the fundamental facts of surface plasmon theory. The sensitivity only depends on excitation light wavelength as well as dielectric properties of metal and dielectrics. The expression involves no structure-specified parameters, which validates this formula in broad cases of periodic, quasiperiodic ...


Fabrication Of Single Nanowire Device Using Electron Beam Lithography, Thach Pham May 2014

Fabrication Of Single Nanowire Device Using Electron Beam Lithography, Thach Pham

Theses and Dissertations

One dimensional nanostructure materials such as nanowires have drawn many interests among the scientific community for a wide range of applications such as field-effect transistors [1], [2], inverters[3], light-emitting diode [1], lasers [4], nanosensors [5], [6], and photodetectors [7]... Comparing with the characterization of nanowire arrays, characterizing a single nanowire will definitely provide a better understanding on new nanowire properties due to simplified behaviors of devices. Although promising theories could be drawn from those results, fabrication of test structure for single nanowire measurements cannot be easily processed using standard microfabrication techniques. Therefore, electron beam lithography integrated with photolithography technique ...


Broadband Nanostructured Antireflection Coating For Enhancing Inas/Gaas Quantum Dots Solar Cells Performance, Jony C. Sarker May 2014

Broadband Nanostructured Antireflection Coating For Enhancing Inas/Gaas Quantum Dots Solar Cells Performance, Jony C. Sarker

Theses and Dissertations

The broadband suppression in reflection is one of the primary focuses in high efficiency solar cell research. In this thesis, a moth-eye inspired nanostructure antireflection coating is fabricated on InAs/GaAs quantum dots solar cell in order to enhance the power conversion efficiency. The abrupt refractive index transition between air and GaAs surface is replaced by a tapering zinc oxide nanoneedle on planar tantalum pentoxide coating. The antireflection structure provides gradual reduction of refractive index away from the solar cell top surface.

The nanostructured antireflection coating is fabricated by utilizing chemical bath deposition of tapered zinc oxide nanoneedles on planar ...


Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar Apr 2014

Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar

Electronic Thesis and Dissertation Repository

In this thesis, Waveguide Evanescent Field Scattering (WEFS) microscopy is developed as a non-invasive, label-free live cell imaging technique. This new high-contrast imaging can be employed to study the first hundred nanometers from the surface as it utilizes the evanescent field of a waveguide as the illumination source. Previously, waveguide evanescent field fluorescence (WEFF) microscopy was developed as a fluorescence imaging technique comparable to the total internal reflection fluorescent (TIRF) microscopy. Both the WEFF and WEFS technique utilizes the same fundamental concepts except in WEFS microscopy imaging is accomplished without the application of any fluorescent labeling. In this work, bacterial ...


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit the ...


Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis Aug 2013

Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis

Theses and Dissertations

Advancements in integrated nanoelectronics will continue to require the use of unique materials or systems of materials with diverse functionalities in increasingly confined spaces.

Hence, research on finite-dimensional systems strive to unearth and expand the knowledge of fundamental physical properties in certain key materials which exhibit numerous concurrent and exploitable functions.

Correspondingly, ferroelectric nanostructures, which particularly display a plethora of complex phenomena, prevalent in countless fields of research, are noteworthy candidates. Presently, however, the assimilation of zero-(0D) and one-dimensional (1D) ferroelectric into micro- or nano-electronics has been lagging, in part due to a lack of applied and fundamental studies ...


New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams May 2013

New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams

Theses and Dissertations

Titanate nanobelts (NBs) have structural characteristics beyond that of clays. Due to a negatively charged lattice matrix of edge-shared TiO6-octahedra, the location of intercalated cations within the interlayer space may dictate the charge-conductions. This environment may in turn govern the lattice-framework's stability and surface properties, based upon our preliminary

data.

On that basis, these nanomaterials have been found in our lab to possess superb biological compatibility that is closely related to the types of the intercalated cations. In addition, a prolonged agitation was proven to enable us to manipulate the titanate NBs' length. In a parallel study, a ripening ...


Iii-V Bismide Optoelectronic Devices, Dongsheng Fan May 2013

Iii-V Bismide Optoelectronic Devices, Dongsheng Fan

Theses and Dissertations

This dissertation explores modeling, molecular beam epitaxy growth, and fabrication of III-V bismide optoelectronic devices, which are of great importance in modern applications of telecommunication, gas sensing, environment monitoring, etc. In the current room-temperature continuous-wave operational GaSb-based type-I InGaAsSb/AlGaInAsSb quantum well laser diodes in 3-4 um mid-wavelength range, the lasing wavelength and performance of the devices are limited due to the lack of hole confinement in the active regions. In this dissertation, a novel GaSb-based GaInAsSbBi material is proposed to replace the conventional InGaAsSb material in the quantum well region, which enables the laser diodes achieve up to 4 ...