Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2016

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 143

Full-Text Articles in Nanoscience and Nanotechnology

Activity Preservation Of Plasmonic Biosensors With A Metal-Organic Framework, Lu Wang Dec 2016

Activity Preservation Of Plasmonic Biosensors With A Metal-Organic Framework, Lu Wang

Engineering and Applied Science Theses & Dissertations

Antibody-antigen recognition enables antibody-conjugated nanostructures to serve as plasmonic biosensors with tunable specificity. However due to the instability of antibodies, these biosensors are susceptible to changes in the environment such as heat and aridity, leading to constraints on the transportation and handling of these sensors. Here we establish a method using a metal-organic framework crystal to preserve biosensor activity under severe environmental conditions, including exposure to high temperatures, an organic solvent and a proteolytic agent. After zeolitic imidazolate framework-8 (ZIF-8) crystals formed for 12 hours on a biosensor of gold nanorods conjugated with a model antibody, rabbit IgG, 80% of ...


Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain ...


Wave Propagation And Imaging In Structured Optical Media, Zun Huang Dec 2016

Wave Propagation And Imaging In Structured Optical Media, Zun Huang

Open Access Dissertations

Structured optical media, usually characterized by periodic patterns of inhomogeneities in bulk materials, provide a new approach to ultimate control of wave propagation with possible practical applications: from distributed feedback lasers by diffraction gratings, to highly nonlinear performance for super-continuum generation, to fiber-optic telecommunications by microstructured photonic crystal fibers, to invisibility cloaking, to super-resolution imaging with metamaterials etc.

In particular, structured optical media allow to manipulate the wave propagation and dispersion. In this thesis, we focus on engineering the propagation phase dispersion by modulating the compositions and dimensions of the periodic elements. By tailoring the dispersion in momentum space, we ...


Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson Dec 2016

Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson

Open Access Dissertations

The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical conducting elements. Within the community of TIM engineers, the vision driving the development of CNT TIMs was born from measurements that revealed impressively high thermal conductivities of individual CNTs. This vision was ...


Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha Dec 2016

Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha

Open Access Dissertations

Since the late 1980s, several key discoveries, such as Giant and Tunneling Magne- toresistance, and advances in magnetic materials have paved the way for exponentially higher bit-densities in magnetic storage. In particular, the discovery of Spin-Transfer Torque (STT) has allowed information to be written to individual magnets using spin-currents. This has replaced the more traditional Oersted-field control used in field-MRAMs and allowed further scaling of magnetic-memories. A less obvious con- sequence of STT is that it has made possible a logic-technology based on magnets controlled by spin-polarized currents. Charge-coupled Spin Logic (CSL) is one such device proposal that couples a ...


Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo Dec 2016

Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo

Open Access Dissertations

In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip ...


Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso Dec 2016

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso

Open Access Dissertations

Electronics and nanotechnology is constantly demanding a decrease in size of fabricated nanoscale features. This decrease in size has become much more difficult recently due to the limited resolution of optical systems that are fundamental to many nanofabrication methods. A lot of effort has been made to fabricate devices smaller than the diffraction limit of light. Creating devices that are capable of confining fields by means of interference patterns of propagating wave modes and surface plasmon, has proven successful to confine light into smaller spot sizes.

Zone plate diffraction lenses generate spots with dimensions very close to the diffraction limit ...


Liquid Metal Particle Popping: Nanoscale To Macroscale, Trevor R. Lear Dec 2016

Liquid Metal Particle Popping: Nanoscale To Macroscale, Trevor R. Lear

Open Access Theses

Liquid metal nanoparticles can be used to produce stretchable electronic devices. Understanding the mechanical properties of liquid metal nanoparticles is crucial to optimizing their use in various applications, especially printing of flexible, stretchable electronics. Smaller nanoparticles are desired for high-resolution printing and compatibility with existing scalable manufacturing methods; however, they contain less liquid metal and are more difficult to rupture than larger particles, making them less desirable for post-processing functionality. This study investigates the mechanics of liquid metal particle rupture as a function of particle size. We employ compression of particle films to characterize the composition of the particle core ...


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc ...


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO were ...


Design, Synthesis, And Characterization Of Nanoscale Optical Devices Using Dna Directed Self-Assembly, William Peter Klein Dec 2016

Design, Synthesis, And Characterization Of Nanoscale Optical Devices Using Dna Directed Self-Assembly, William Peter Klein

Boise State University Theses and Dissertations

Near-field energy transfer has great potential for use in nanoscale communications, biosensing, and light harvesting photonic devices. However, the light collecting and energy transferring efficiency of current devices is poor, resulting in few commercially available applications. Current human-made light harvesting devices lack the benefits of natural selection. Natural systems are typically highly optimized and highly efficient. For example, transfer efficiency in photosynthesis is greater than 90%.

In this work, two classes of optical devices were designed, synthesized, and characterized: Plasmonic waveguides and FRET-based photonic devices. In the case of plasmonic waveguides, a multi-scaffold DNA origami synthesis method was developed to ...


Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu Dec 2016

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu

Boise State University Theses and Dissertations

Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves ...


Kinetic Control Of Nucleic Acid Strand Displacement Reactions, Xiaoping Olson Dec 2016

Kinetic Control Of Nucleic Acid Strand Displacement Reactions, Xiaoping Olson

Boise State University Theses and Dissertations

Nucleic acids are information-dense, programmable polymers that can be engineered into primers, probes, molecular motors, and signal amplification circuits for computation, diagnostic, and therapeutic purposes. Signal amplification circuits increase the signal-to-noise ratio of target nucleic acids in the absence of enzymes and thermal cycling. Amplification is made possible via toehold mediated strand displacement – a process where one nucleic acid strand binds to a nucleation site on a complementary helix, which then displaces one of the two strands in a nucleic acid complex. When compared to polymerase chain reactions (PCR), the sensitivity and stability of toehold-mediated strand displacement reactions suffer from ...


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient ...


Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead Dec 2016

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead

Theses and Dissertations

The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks ...


A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu Dec 2016

A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu

Theses and Dissertations

This research focused on the application of electrochemical biosensors for the rapid detection of pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium, in foods. The possible presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food companies. Therefore, the demand for rapid and sensitive methods to detect foodborne pathogens is growing. In this research, an impedimetric immunosensor was first developed for the rapid detection of E. coli O157:H7 and S. Typhimurium in foods. It was based on the techniques of immunomagnetic separation, enzyme labelling, and electrochemical ...


Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of ...


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of ...


Novel Magnetic Nanostructures For Enhanced Magnetic Hyperthermia Cancer Therapy, Zohreh Nemati Porshokouh Nov 2016

Novel Magnetic Nanostructures For Enhanced Magnetic Hyperthermia Cancer Therapy, Zohreh Nemati Porshokouh

Graduate Theses and Dissertations

In this dissertation, I present the results of a systematic study on novel multifunctional nanostructure systems for magnetic hyperthermia applications. All the samples have been synthesized, structurally/magnetically characterized, and tested for magnetic hyperthermia treatment at the Functional Materials Laboratory of the University South Florida. This work includes studies on four different systems: (i) Core/shell Fe/γ-Fe2O3 nanoparticles; (ii) Spherical and cubic exchange coupled FeO/Fe3O4 nanoparticles; (iii) Fe3O4 nano-octopods with different sizes; (iv) High aspect ratio FeCo nanowires and Fe3O4 nanorods.

In particular, we demonstrated the ...


Molybdenum Disulfide-Conducting Polymer Composite Structures For Electrochemical Biosensor Applications, Hongxiang Jia Nov 2016

Molybdenum Disulfide-Conducting Polymer Composite Structures For Electrochemical Biosensor Applications, Hongxiang Jia

Graduate Theses and Dissertations

Lactic acid is widely existing in human bodies, animals and microorganisms. Recently, using biosensor to detect the concentration of lactic acid and diagnose disease have attracted great research and development interests. Nanocomposites is one of the best material used for biosensor because their wonderful conductivity, optical and electrochemical properties. In the study, MoS2 and polypyrrole (PPY) are used for the composite material electrode. To determine whether lactate oxidase (LOD) was helpful for the biosensor’s detective properties, both PPY-MoS2 film with LOD and PPY-MoS2 film without LOD are being tested. The fourier transform infrared spectroscopy (FTIR) and ...


Applied Photoproperties Of Phenylene Ethynylenes, Patrick L. Donabedian Oct 2016

Applied Photoproperties Of Phenylene Ethynylenes, Patrick L. Donabedian

Nanoscience and Microsystems ETDs

Light-absorbing molecules can be used as powerful tools to perturb and understand biological systems by fluorescence, sensitization, or photochemical reactions. A thorough understanding of the delivery of dyes to specific biochemical targets and the processes that control the fate of excited-state energy is needed to engineer useful technology out of organic photochemistry. This thesis presents four projects investigating different aspects of pathogen destruction and biochemical sensing in a variety of systems, using the properties of p-phenylene ethynylenes (PEs), an especially flexible and well-studied class of conjugated molecules. Of particular relevance, some PEs are found to be effective dyes for amyloid ...


Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang Oct 2016

Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang

Electronic Thesis and Dissertation Repository

Piezoelectric nanomaterials have attracted increasing attentions due to their distinct electromechanical features, especially the size-dependent properties, which differ greatly from their bulk counterparts.

Due to the large strain gradients presented in nanostructures, the flexoelectricity is believed to be responsible for such size-dependent properties. In this thesis, based on the Kirchhoff plate model and the extended linear piezoelectric theory, a modified continuum mechanics based model is developed to study the size-dependent flexoelectric effect upon the static bending behaviors of a cantilevered piezoelectric nanoplate (PNP). Finite difference method (DFM) is employed to obtain the approximate numerical solutions.

The numerical results indicate that ...


Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy Oct 2016

Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy

Doctoral Dissertations

Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due ...


Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson Oct 2016

Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson

Doctoral Dissertations

Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for treatment of patients with intractable temporal lobe epilepsy, a clinical need that is partially fulfilled to date through a subjective, and at times inconclusive, evaluation of the recorded electroencephalogram (EEG). Using brain connectivity analysis, patterns of causal interactions between brain regions were derived from multichannel EEG of 127 seizures in nine patients with focal, temporal lobe epilepsy (TLE). The statistically significant directed interactions in the reconstructed brain networks were estimated from three second intracranial multi-electrode EEG segments using the Generalized Partial Directed Coherence (GPDC) and validated ...


Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun Oct 2016

Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun

Doctoral Dissertations

Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery.

In this study, a drug delivery system was built based on halloysite ...


Fabrication And Characterization Of Conductive Melt Electrospun Fibers, Brandon Ross Oct 2016

Fabrication And Characterization Of Conductive Melt Electrospun Fibers, Brandon Ross

Graduate Theses & Non-Theses

Conductive polymer nanocomposites are a type of particle reinforced plastic composite where the doping material is electrically conductive. The diverse properties of an engineered composite material allow for the material properties to be fine-tuned for the specific application. This research focuses on using carbon allotropes, such as two-dimensional graphene and one-dimensional carbon nanotubes, to achieve direct current electrical conductivity through a polymer fiber. Melt electrospinning is the process used for creating the micrometer scale fibers by melting thermoplastic materials. High electrostatic fields apply a force to the polymer melt and a single fiber is drawn out. The resistivity of the ...


An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall Oct 2016

An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall

Mechanical & Aerospace Engineering Theses & Dissertations

The indentation size effect (ISE) in metals is described as the rise in hardness with decreasing depth of indentation and contradicts conventional plasticity behavior. The goal of this dissertation is to further examine the fundamental dislocation mechanisms that may be contributing to the so-called indentation size effect. In this work, we examined several metals and alloys including 99.999% Aluminum (SFE ~200 mJ/m2), 99.95% Nickel (SFE ~125 mJ/m2), 99.95% Silver (SFE ~22 mJ/m2), and three alloys, alpha brass 70/30 (SFE >10 mJ/m2), 70/30 nickel copper (SFE ...


Development Of Novel Nanomaterials For Lithium Sulfur Batteries, Xia Li Sep 2016

Development Of Novel Nanomaterials For Lithium Sulfur Batteries, Xia Li

Electronic Thesis and Dissertation Repository

Lithium-sulfur batteries are considered as the most promising next generation high-energy batteries. Compared with other kinds of battery, Li-S batteries have ultra-high theoretical energy density, which is a good candidate for electric vehicles and hybrid electric vehicles in future. However, there are still many challenges to be addressed in Li-S batteries. Design of electrodes, selection of electrolytes, and battery assemble have direct effects on the safety, cost and electrochemical performance of Li-S batteries. Therefore, it is greatly important to develop novel electrodes to achieve high-energy for Li-S batteries. This thesis mainly focuses on the design of sulfur cathode of Li-S ...


Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury Sep 2016

Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury

Electronic Thesis and Dissertation Repository

Nano-scale zero valent iron (nZVI) has shown promising mobility and in-situ reactivity with chlorinated volatile organic compounds when injected into saturated porous media. The current study evaluated nZVI mobility and subsequent reactivity with in-situ contaminants in a variably saturated porous media. The nZVI particles, synthesized onsite at subzero temperatures, demonstrated complete trichloroethene (TCE) degradation within the target area. Furthermore, a three dimensional finite difference model (CompSim) was utilized to investigate nZVI mobility in variably saturated zones. Model predicted well head data were in very good agreement with field observations. Simulation results showed that the injected slurry migrated radially outward from ...


Development And Evaluation Of A Near-Infrared (1047 Nm) Photoacoustic-Nephelometer Spectrometer For Detection And Optical Characterization Of Black Carbon Aerosol, Yang Yu Aug 2016

Development And Evaluation Of A Near-Infrared (1047 Nm) Photoacoustic-Nephelometer Spectrometer For Detection And Optical Characterization Of Black Carbon Aerosol, Yang Yu

Engineering and Applied Science Theses & Dissertations

Black carbon (BC) aerosol are aggregates of small carbon spherules of <10 nm to approximately 50 nm in diameter. They are characterized by their strong visible light absorption property with a mass absorption cross-section (MAC) value above 5 m2 g −1 at a wavelength λ = 550 nm, which increases inversely with wavelengths from near-infrared (≈1 µm) to ultraviolet with a power law of one. The absorbing nature of BC aerosol has been implicated in regional atmospheric warming, changing of monsoon patterns, and accelerated melting of the glaciers. The BC radiative effects over earth is currently estimated within a factor of four, resulting in one of the largest uncertainties in climate modeling. This uncertainty results from our inadequate knowledge about regional BC emission rates, and associated aerosol microphysical ...