Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Optics

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 43

Full-Text Articles in Nanoscience and Nanotechnology

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste ...


Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia Dec 2018

Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia

Theses and Dissertations

The high exciton binding energy in one dimensional (1D) nano-structures makes them prominent for optoelectronic device applications, making it relevant to theoretically investigate their electronic and optical properties. Many-body effects that are not captured by the conventional density functional theory (DFT) have a huge impact in such selenium and tellurium single helical atomic chains. This work goes one step beyond DFT to include the electron self-energy effects within the GW approximation to obtain a corrected quasi-particle electronic structure. Further, the Bethe-Salpeter equation was solved to obtain the absorption spectrum and to capture excitonic effects. Results were obtained using the Hyberstein-Louie ...


Plasmonic And Upconversion Nanoparticles For Bladder Cancer Treatment, Suehyun Katherine Cho Apr 2018

Plasmonic And Upconversion Nanoparticles For Bladder Cancer Treatment, Suehyun Katherine Cho

Electrical, Computer & Energy Engineering Graduate Theses & Dissertations

This thesis reports syntheses and surface modifications of various nanoparticles, including plasmonic, upconversion, and indium tin oxide nanoparticles for in situ bladder cancer detection and treatment.

The first part of this thesis reports a new and efficient polyethylene glycol (PEG) coating of gold nanorods (AuNRs). This coating technique is proven not only to be more stable in water compared to conventional coating methods, but also allows conjugation of an anti-epidermal growth factor receptor, C-225 antibodies. The AuNRs conjugated with C-225 antibodies (CNR) is then used in both in vitro and in vivo settings to demonstrate specific, targeted treatment capabilities by ...


Plasmon-Enhanced Optical Sensing By Engineering Metallic Nanostructures, Peng Zheng Jan 2018

Plasmon-Enhanced Optical Sensing By Engineering Metallic Nanostructures, Peng Zheng

Graduate Theses, Dissertations, and Problem Reports

The world’s booming population projected to reach 10 billion by 2050 causes enormous stresses on environmental safety, food supply, and healthcare, which in return threatens human civilizations. One of the most promising solutions lies at innovating point-of-care (POC) sensing technologies to conduct detection of environmental hazards, monitoring of food safety, and early diagnosis of diseases in a timely and accurate manner. The discovery of surface-enhanced spectroscopy in the 1970s has significantly stimulated research on light-matter interaction which gives rise to enhanced optical phenomena such as surface-enhanced Raman scattering (SERS), plasmon-enhanced fluorescence (PEF), and particularly, they have found enormous applications ...


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted ...


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear ...


Nanoscale And Ultrafast Imaging And Spectroscopy To Probe Heterogeneity Of Novel Materials And Coherence Of Thermal Near-Fields, Brian Thomas O'Callahan Jan 2017

Nanoscale And Ultrafast Imaging And Spectroscopy To Probe Heterogeneity Of Novel Materials And Coherence Of Thermal Near-Fields, Brian Thomas O'Callahan

Physics Graduate Theses & Dissertations

Novel optical phenomena emerge on nanometer length scales which determine the macroscopic material response. By bringing a sharp atomic force microscopy tip close to a surface and illuminating with either a laser, a broadband light source, or the intrinsic thermal fields of the material itself, we can probe near-field optical properties with spatial resolution only limited by the apex radius of the tip. These properties include the spectral, spatial, and coherence properties of the thermal near-fields that emerge at sub-wavelength distances from any matter at non-zero temperature that affect thermal emission and nanoscale heat transfer. I also apply near-field imaging ...


Uncovering New Thermal And Elastic Properties Of Nanostructured Materials Using Coherent Euv Light, Jorge Nicolás Hernández Charpak Jan 2017

Uncovering New Thermal And Elastic Properties Of Nanostructured Materials Using Coherent Euv Light, Jorge Nicolás Hernández Charpak

Physics Graduate Theses & Dissertations

Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured ...


Coherent Femtosecond Spectroscopy And Nonlinear Optical Imaging On The Nanoscale, Vasily Kravtsov Jan 2017

Coherent Femtosecond Spectroscopy And Nonlinear Optical Imaging On The Nanoscale, Vasily Kravtsov

Physics Graduate Theses & Dissertations

Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond ...


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement ...


Wave Propagation And Imaging In Structured Optical Media, Zun Huang Dec 2016

Wave Propagation And Imaging In Structured Optical Media, Zun Huang

Open Access Dissertations

Structured optical media, usually characterized by periodic patterns of inhomogeneities in bulk materials, provide a new approach to ultimate control of wave propagation with possible practical applications: from distributed feedback lasers by diffraction gratings, to highly nonlinear performance for super-continuum generation, to fiber-optic telecommunications by microstructured photonic crystal fibers, to invisibility cloaking, to super-resolution imaging with metamaterials etc.

In particular, structured optical media allow to manipulate the wave propagation and dispersion. In this thesis, we focus on engineering the propagation phase dispersion by modulating the compositions and dimensions of the periodic elements. By tailoring the dispersion in momentum space, we ...


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient ...


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO were ...


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity ...


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness ...


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical ...


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Physics Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from ...


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Mechanical Engineering Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from ...


Tailoring Optical And Plasmon Resonances In Core-Shell And Core-Multishell Nanowires, Sarath Ramadurgam Jan 2016

Tailoring Optical And Plasmon Resonances In Core-Shell And Core-Multishell Nanowires, Sarath Ramadurgam

Open Access Dissertations

Semiconductor nanowires (NWs) are sub-wavelength structures which exhibit strong optical (Mie) resonances in the visible range. In addition to such optical resonances, the localized surface plasmon resonances (LSPR) in metal and semiconductor (or dielectric) based core-shell (CS) and core-multishell (CMS) NWs can be tailored to achieve novel negative-index metamaterials (NIM), extreme absorbers, invisibility cloaks and sensors. Particularly, in this dissertation, the versatility of CS and CMS NWs for the design of negative-index metamaterials in the visible range and, plasmonic light harvesting in ultrathin photocatalyst layers for water splitting are studied.

Utilizing the LSPR in the metal layer and the magnetic ...


Scattering-Scanning Near-Field Optical Microscopy With Femtosecond Laser Pulses, Peter B. Van Blerkom Jan 2016

Scattering-Scanning Near-Field Optical Microscopy With Femtosecond Laser Pulses, Peter B. Van Blerkom

Physics Graduate Theses & Dissertations

The macroscopic properties of materials we observe emerge from the collective structural configuration and dynamical behavior of the atomic or molecular constituents. Therefore, in order to fully characterize and understand these properties, it is necessary to develop measurement techniques capable of probing at these scales. Such a technique is that of combining scattering scanning near-field optical microscopy with ultrafast spectroscopy. Traditional, far-field microscopy is limited by diffraction, making it impossible to resolve details smaller than approximately half the wavelength of the illuminating light. However, the electromagnetic field that is produced when an object is illuminated is not simply characterized by ...


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in ...


Optical Communication Using Hybrid Micro Electro Mechanical Structures (Mems) And Commercial Corner Cube Retroreflector (Ccr), Sunny Kedia Nov 2015

Optical Communication Using Hybrid Micro Electro Mechanical Structures (Mems) And Commercial Corner Cube Retroreflector (Ccr), Sunny Kedia

Graduate Theses and Dissertations

This dissertation presents a free-space, long-range, passive optical communication system that uses electrostatically modulated microelectromechanical systems (MEMS) structures coupled with a glass total internal reflection (TIR)-type corner cube retroreflector (CCR) as a non-emitting data transmitter. A CCR consists of three mirrors orthogonal to each other, so that the incident beam is reflected back to the incident beam, source. The operational concept is to have a MEMS modulator fusion with TIR CCR, such that the modulators are working periodically to disrupt the evanescent waves at the air interface of one of the three back glass faces of a TIR CCR ...


Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang May 2015

Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang

Electronic Thesis and Dissertation Repository

Wavelength to refractive index sensitivity and resonance wavelength position are two very important performance characteristics for nanohole array based surface plasmon resonance sensors while these characteristics are mostly researched on periodic nanohole arrays, instead of quasiperiodic nanohole arrays. This thesis deduces theoretical equations about the wavelength to refractive index sensitivity and resonance wavelength position of quasiperiodic nanohole arrays. Theoretical analysis shows that wavelength to refractive index sensitivity is not associated with geometry pattern, hole size or pitch but with the wavelength. A novel surface plasmon resonance platform is built by transferring gold films patterned with quasiperiodic nanohole arrays to the ...


Graphene-Semiconductor Heterojunctions And Devices, Tzu-Min Ou Apr 2015

Graphene-Semiconductor Heterojunctions And Devices, Tzu-Min Ou

Electrical, Computer & Energy Engineering Graduate Theses & Dissertations

In this thesis we explore the potential of versatile graphene-semiconductor heterojunctions in photodetection and field-effect transistor (FET) applications. The first part of the thesis studies near-infrared photodiode (NIR PD) based on a graphene- n-Si heterojunction in which graphene is used as the absorbing medium. Graphene is chosen for its absorption in NIR wavelengths to which Si is not responsive. Most graphene detectors in the literature are photoconductors that have a high dark current. The graphene-Si heterojunction PD has a large Schottky barrier height that suppresses the dark current and enhances the current rectification and the photon detectivity.

The fabricated graphene-Si ...


Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West Jan 2015

Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West

Open Access Dissertations

Current nanofabrication is almost exclusively limited to top-down, two-dimensional techniques. As technology moves more deeply into the nano-scale regime, fabrication of new devices with quasi three-dimensional geometries shows great potential. One excellent example of an emerging field that requires this type of non-conformal 3D fabrication technique is the field of Transformation Optics. This field involves transforming and manipulating the optical space through which light propagates. Arbitrarily manipulating the optical space requires advanced fabrication techniques, which are not possible with current two-dimensional fabrication technologies. One step toward quasi three-dimensional nanofabrication involves employing angled deposition allowing new growth mechanisms, and enabling a ...


Optical And Electronic Interactions At The Nanoscale, Michael Edward Turk Jan 2015

Optical And Electronic Interactions At The Nanoscale, Michael Edward Turk

Publicly Accessible Penn Dissertations

In this dissertation, we discuss optical and electronic interactions in three nanometer scale semiconductor systems in a broadly defined sense. These studies are performed using time-integrated and time-resolved optical spectroscopies and temperature- and field-dependent electrical transport measurements. We first discuss the construction and optimization of an optical apparatus for performing broadband, time-integrated and sub-picosecond fluorescence and absorption measurements. Using this apparatus, we then characterize the impact on the optically-excited carrier relaxation dynamics of cadmium selenide quantum dots due to a surface treatment previously shown to increase interparticle coupling, namely the solution exchange of native, aliphatic ligands for thiocyanate followed by ...


Novel Concepts In Near-Field Optics: From Magnetic Near-Field To Optical Forces, Honghua Yang Jan 2015

Novel Concepts In Near-Field Optics: From Magnetic Near-Field To Optical Forces, Honghua Yang

Physics Graduate Theses & Dissertations

Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection.

Firstly, the optical dielectric functions ...


Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani Oct 2014

Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani

Open Access Dissertations

Light incident on a metallic structure excites collective oscillations of electrons termed as plasmons. These plasmons are useful in control and manipulation of information in nanoscale dimensions and at high operating frequencies. Hence, the field of plasmonics opens up the possibility of developing nanoscale optoelectronic circuitry for computing and sensing applications. One of the challenges in this effort is the lack of tunable plasmonic resonance. Currently, the resonant wavelength of plasmonic structure is fixed by the material and structural parameters. Post-fabrication dynamic control of a plasmonic resonance is rather limited.^ In this thesis we explore the combination of optoelectrical properties ...


Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy Oct 2014

Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy

All Dissertations, Theses, and Capstone Projects

This thesis describes the design, fabrication and characterization of certain nanostructures to engineer light-matter interaction. These materials have peculiar dispersion properties owing to their structural design, which is exploited to control spontaneous emission properties of emitters such as quantum dots and dye molecules. We will discuss two classes of materials based on the size of their unit cell compared to the wavelength of the electromagnetic radiation they interact with. The first class are hyperbolic metamaterials (HMM) composed of alternate layers of a metal and a dielectric of thicknesses much smaller than the wave- length. Using a HMM composed of silver ...