Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in ...


Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli Nov 2018

Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli

Master's Theses

Titanium-Aluminum alloys are one of the widely used alloys in multiple engineering applications. They are highly preferred in Selective Laser Melting (SLM) processes due to their low density, high melting temperature, and good strength. Segregation occurs during the solidification of most alloys and produces a non-uniform distribution of atoms. In SLM, segregation may depict the type of adhesion between the two deposited interfacial layers and the strength between the interphase between an already solidified layer and a new one, and overall, the quality of the printed part. In order to avoid segregation, the understanding of the segregation behavior at atomistic ...


Computer Simulations Of Propulsion Of Self-Propelled Flexible Nanobody, Ye Luo Jun 2015

Computer Simulations Of Propulsion Of Self-Propelled Flexible Nanobody, Ye Luo

Master's Theses

Swimming bodies such as flagellum and fishes are found everywhere in liquid environment. The research of simulation of swimmers is one of the most important branches among the field of biophysics. This study focus on the direct computer simulation of self-propelled flexible nanobody in fluid field. Two new objectives is studied based on the previous research of Tai-hsien Wu and Dewei ai (2014)[1]. ln Wu's article, the front end of micro swimming body is fixed and the migration of swimmers is neglected. For a further study, one of new targets is to release the head in 3-D simulation ...


Electroplating Of Nanoengineered Polymer Substrate, Brandon Voelker Jun 2014

Electroplating Of Nanoengineered Polymer Substrate, Brandon Voelker

Master's Theses

The development of a polyethylene based polymer with metallic inclusions, a nanoengineered polymer, has recently opened up great potential for many new commercial and industrial applications. The major advantage of developing these nanoengineered polymers is to be able to tailor the resistance and other properties by varying the composition of the polymer. The industrial usage of this polymer benefits from the addition of an electrically conductive, metallic coating. This research develops methods of electroplating nickel and copper layers on to the polymer substrates using DC and pulsed techniques.

Electroplating is conducted in a 1000 mL beaker using a specialized plating ...


Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes May 2012

Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes

Master's Theses

Scanning Probe Microscopy techniques have proven very useful in the investigation of porous nanostructured surfaces. Especially, Atomic Force Microscopy (AFM) has been widely used due to its compatibility with non-conducting surfaces. In particular, AFM often complements other techniques like scanning and transmission electron microscopy by providing quantitative surface information coupled with nanoscale spatial resolution. Its ability to operate in fluid is also important, as this allows researchers to mimic the physiological environment of biological materials and systems. In this work, two main types of porous materials are studied with AFM, including Phosphoric Acid Fuel Cell (PAFC) electrode catalyst layers, and ...


High Speed Atomic Force Microscopy Techniques For The Efficient Study Of Nanotribology, James L. Bosse May 2012

High Speed Atomic Force Microscopy Techniques For The Efficient Study Of Nanotribology, James L. Bosse

Master's Theses

As mechanical devices scale down to micro/nano length scales, it is crucial to understand friction and wear at the nanoscale (nanotribology) especially at technically relevant sliding velocities. Accordingly, three novel techniques have been developed to study nanotribology, leveraging recent advances in high speed AFM. The first method utilizes high line-scanning rates coupled with sinusoidal scanning along the AFM fast scan axis, enabling rapid friction measurements as a function of velocity up to 20 mm/sec. The second method rapidly acquires friction versus force curves through disabling the feedback loop during scanning and relating the resulting lateral data with the ...


Electrochemical Synthesis Of Single Crystal Metal Nanowires, Nan Li Aug 2011

Electrochemical Synthesis Of Single Crystal Metal Nanowires, Nan Li

Master's Theses

Electrodeposition is an efficient and economical approach for template synthesis of one-dimensional (1D) nanostructured materials. Based on the porous membranes as templates during electrodeposition, metallic nanowires, nanorods, and nanotubes can overcome the geometrical restrictions to be inserted into the nanometric recesses with both diameter and length well controlled by tuning the size and thickness of the templates.

In this work, the morphology, growth rate and texture of copper nanowires prepared with templates were investigated by the controlled parameters in various experiments. Cu nanowire arrays with preferential orientations can be successfully synthesized into the Anodic Aluminum Oxide (AAO) templates with optimized ...