Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

465 Full-Text Articles 854 Authors 117187 Downloads 47 Institutions

All Articles in Semiconductor and Optical Materials

Faceted Search

465 full-text articles. Page 1 of 17.

Ferroelectric-Semiconductor Systems For New Generation Of Solar Cells, Rahmatollah Eskandari 2017 University of New Orleans, New Orleans

Ferroelectric-Semiconductor Systems For New Generation Of Solar Cells, Rahmatollah Eskandari

University of New Orleans Theses and Dissertations

This dissertation includes two parts. In the first part the study is focused on the fabrication of multifunctional thin films for photovoltaic applications. There is no doubt about the importance of transforming world reliance from traditional energy resources, mainly fossil fuel, into renewable energies. Photovoltaic section still owns very small portion of the production, despite its fast growth and vast research investments. New methods and concepts are proposed in order to improve the efficiency of traditional solar cells or introduce new platforms. Recently, ferroelectric photovoltaics have gained interest among researchers. First objective in application of ferroelectric material is to utilize ...


Understanding Photovoltaic Properties Of Pbs Quantum Dot Solids Via Solution Contacting, Vitalii Dereviankin, Erik Johansson 2017 Portland State University

Understanding Photovoltaic Properties Of Pbs Quantum Dot Solids Via Solution Contacting, Vitalii Dereviankin, Erik Johansson

Student Research Symposium

Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photontoelectron conversion yields. However, record power conversion efficiency remain low, in part due to small photovoltages, which in turn are affected by both bulk and interfacial defects. Their relative impacts on limiting the photovoltaic performance of QD solids are not known. Interfacial defects can be formed when contacting a semiconductor and may dominate the semiconductor/metal or metaloxide junction properties. The objective of this study is to explore whether electrochemical contacting using liquid electrolytes provides means of contacting QD solids without introducing interfacial defects. We have initially focused ...


Compositionally Graded Indium Gallium Nitride Solar Cells, Christopher Matthews 2017 University of Arkansas, Fayetteville

Compositionally Graded Indium Gallium Nitride Solar Cells, Christopher Matthews

Electrical Engineering Undergraduate Honors Theses

For the past several decades, methods to harvest solar energy have been investigated intensively. A majority of the work done in this field has been on solar cells made with silicon – the most mature semiconductor material. Recent developments in material fabrication and processing techniques have enabled other semiconductor materials to attract practical interest and research effort as well. Indium gallium nitride (InGaN) is one such material. The material properties of InGaN indicate that solar cells made with it have the potential to achieve much higher power density than a standard silicon solar cell. High power density InGaN solar cells could ...


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio 2017 University of Arkansas, Fayetteville

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear ...


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das 2017 University of Nebraska-Lincoln

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

No abstract provided.


Analysis Of Tactors For Wearable Simulator Feedback: A Tactile Vest Architecture, David Prater, Stephen B. Gilbert, Eliot H. Winer 2017 Iowa State University

Analysis Of Tactors For Wearable Simulator Feedback: A Tactile Vest Architecture, David Prater, Stephen B. Gilbert, Eliot H. Winer

Stephen B. Gilbert

Current training simulators for police officers and soldiers lack two critical qualities for establishing a compelling sense of immersion within a virtual environment: a strong disincentive to getting shot, and accurate feedback about the bodily location of a shot. This research addresses these issues with hardware architecture for a Tactical Tactile Training Vest (T3V). In this study, we have evaluated the design space of impact “tactors” and present a T3V prototype that can be viscerally felt. This research focuses on determining the optimal design parameters for creating maximum tactor hitting energy. The energy transferred to the projectile directly relates to ...


Computational Studies Of Grain Boundary Behavior In Uranium Dioxide Nuclear Fuels, Eric Nelson, Lan Li (Mentor), Simon C. Middleburgh (Mentor) 2017 Westinghouse Electric Company LLC

Computational Studies Of Grain Boundary Behavior In Uranium Dioxide Nuclear Fuels, Eric Nelson, Lan Li (Mentor), Simon C. Middleburgh (Mentor)

Idaho Conference on Undergraduate Research

Nuclear power is responsible for the production of 380,000 Megawatts of energy worldwide, which results in over 11% of the world’s energy production [world-nuclear.org]. Pellet-cladding interactions (PCI) are a key nuclear fuel failure mechanism which presents formidable challenges to researchers due to extreme nuclear fission conditions. Although PCI interactions have been reduced due to fuel additives, understandings of PCI interactions remain elusive. We propose new approaches to increase understanding of nuclear fuel interactions; specifically, uranium dioxide and the effects of dopants. This study focuses on amorphous uranium dioxide and fission products, while benchmarking new methods with previous ...


Two-Photon Polymerization Of Soft Matter Composites, Yasser Albarakat 2017 University of Colorado, Boulder

Two-Photon Polymerization Of Soft Matter Composites, Yasser Albarakat

Undergraduate Honors Theses

With two-photon photopolymerization (2PP), it is possible to design and produce composite materials with three dimensional control and sub-micron precision, thanks to highly localized nonlinear process of polymerization. In this work, the feasibility of fabricating mesostructured composite particles with pre-defined shape and topology is examined. We explored polymerizable materials from both commercial sources and laboratory products as well as variable laser parameters, including pulse width and intensity along with dwell time, to find optimum conditions for 2PP. Later 2PP was performed on polymerizable materials containing quantum dots dispersion and the optical response of the resultant composite was characterized with spectroscopy ...


The Effects Of Carboxylic Acids In Aluminum Anodizing, Abby E. Koczera 2017 University of New Hampshire

The Effects Of Carboxylic Acids In Aluminum Anodizing, Abby E. Koczera

Honors Theses and Capstones

Hard-anodized alumina coatings were formed in sulfuric acid at low temperature and high current density in the presence of carboxylic acid additives. Citric acid, trimesic acid, mellitic acid and ethylenediaminetetraacetic acid (EDTA) were utilized in varying concentrations. The additives were chosen for their capacity to form complexes with tri-valent aluminum and hence impart chemical stability to the coatings. The coatings were sealed in boiling water, and corrosion resistance was observed in a high pH solution of potassium hydroxide. The coatings were examined using scanning electron microscopy (SEM) to assess coating thickness and pore dimensions. Thicker coatings were produced when the ...


The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini 2017 University of Massachusetts - Amherst

The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini

Masters Theses May 2014 - current

An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor-based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. This thesis studies the two well-known approaches: confinement and energy filtering, and implements improvements to achieve higher thermoelectric performance. The effect of confinement is evaluated using a 2D material with a gate and utilizing the features in the density of states. In addition to that ...


Acenes, Heteroacenes And Analogous Molecules For Organic Photovoltaic And Field Effect Transistor Applications, Devin B. Granger 2017 University of Kentucky

Acenes, Heteroacenes And Analogous Molecules For Organic Photovoltaic And Field Effect Transistor Applications, Devin B. Granger

Theses and Dissertations--Chemistry

Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have ...


Assessment Of Individual Photovoltaic Module Performance After 26 Years Of Field Exposure At The Telonicher Marine Lab In Trinidad, California, Jake Rada 2017 Humboldt State University

Assessment Of Individual Photovoltaic Module Performance After 26 Years Of Field Exposure At The Telonicher Marine Lab In Trinidad, California, Jake Rada

Projects

In 1990, 192 ARCO M75 photovoltaic (PV) modules were installed as a part of the Schatz Solar Hydrogen Project at the Humboldt State University (HSU) Telonicher Marine Lab in Trinidad, California, within 150 m of the Pacific Ocean. This 9.2 kW-rated PV array was used to power the marine laboratory air compressor and an electrolyzer. Individual current-voltage (IV) curve tests were performed on each of the PV modules prior to the array’s construction in 1990 and again in 2001, 2010, and, most recently, in 2016, following decommissioning of the array. After 25.5 years of use, 188 of ...


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin 2017 University of Arkansas, Fayetteville

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement ...


Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers 2016 University of Tennessee, Knoxville

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buer layer. Neutron reactivity reveals that these ...


Photoluminescence Studies Of Amorphous Boron Carbide And Tungsten Diselenide Thin Films, David M. Allendorfer 2016 University of Nebraska - Lincoln

Photoluminescence Studies Of Amorphous Boron Carbide And Tungsten Diselenide Thin Films, David M. Allendorfer

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

For many years scientists and engineers have been researching semi-conducting materials for use in a broad array of electronic devices. With the growing demand for faster, smaller and more efficient electronics, new materials must be characterized and their properties quantified. The focus of this thesis is to develop a system to measure photoluminescence in opto-electronic materials. Photoluminescence measurements are important because it can give researchers valuable information about a material’s band structure. This thesis begins by presenting the carrier recombination mechanisms and how they apply to photoluminescence. A system was developed to measure photoluminescence spectroscopy. This system was tested ...


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox 2016 University of Maine

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external ...


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman 2016 University of Arkansas, Fayetteville

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO were ...


Role Of The Inner Shell Architecture On The Various Blinking States And Decay Dynamics Of Core-Shell And Core-Multishell Quantum Dots, Pooja Bajwa 2016 University of Arkansas, Fayetteville

Role Of The Inner Shell Architecture On The Various Blinking States And Decay Dynamics Of Core-Shell And Core-Multishell Quantum Dots, Pooja Bajwa

Theses and Dissertations

Colloidal semiconductor nanocrystals (quantum dots, QDs) have received much attention in recent years due to their uniquely size-tunable properties leading to a number of promising applications. Some of their most popular applications include their use as fluorescent probes in biology, as electro-optical components and in photovoltaic devices. CdSe-based QDs are particularly important because of their ease of synthesis, high photoluminescence quantum yields (PL QYs) across the whole visible spectrum and their photostabilty. Shelling of core QDs is usually carried out to improve their optical properties, minimize outer environmental effects on their properties, and avoid toxic element exposure to the environment ...


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill 2016 University of Arkansas, Fayetteville

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these ...


Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris 2016 University of Arkansas, Fayetteville

Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris

Theses and Dissertations

Lead selenide and lead selenide/lead sulfide core/shell nanocrystals were investigated for use in near infrared photodetectors. A colloidal synthesis method was used for both the core and core/shell configurations. The lead sulfide shell was examined in order to mitigate oxidation of the nanoparticle surface. Absorbance and photoluminescence spectra were measured at room temperature and 77 K, respectively. Transmission electron microscopy images were also obtained to confirm crystallography and size. Bulk lead selenide was simulated in WIEN2k utilizing the linear-augmented plane wave method of solving density functional theory to better understand the electronic structure of PbSe. The crystal ...


Digital Commons powered by bepress