Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

498 Full-Text Articles 888 Authors 112643 Downloads 41 Institutions

All Articles in Semiconductor and Optical Materials

Faceted Search

498 full-text articles. Page 1 of 18.

An Antireflective Tco Film For Czts Solar Cells, Feng Zhan 2016 Guangxi University

An Antireflective Tco Film For Czts Solar Cells, Feng Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Transparent Glass Ceramic Containing Ndf3 Nanocrystals For Magneto-Optical Application, Wei Li, Youting Huang, Wenzhe Chen 2016 Fujiang University of Technology

Transparent Glass Ceramic Containing Ndf3 Nanocrystals For Magneto-Optical Application, Wei Li, Youting Huang, Wenzhe Chen

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fluorescent Materials Design At Nanoscale For Biomedical Photonics In Near Infrared Window, Kohei Soga, Masao Kamimura 2016 Tokyo University of Science

Fluorescent Materials Design At Nanoscale For Biomedical Photonics In Near Infrared Window, Kohei Soga, Masao Kamimura

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Molecular Dynamics Study Of Growth Of Silicon From Melt And Formation Of Dislocation, Naigen Zhou, Chi Zhang, Bo Liu, Rongyao Luo, Ke Li, Lang Zhou 2016 Nanchang University

Molecular Dynamics Study Of Growth Of Silicon From Melt And Formation Of Dislocation, Naigen Zhou, Chi Zhang, Bo Liu, Rongyao Luo, Ke Li, Lang Zhou

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Dft Calculations And Experimental Study Of The Lattice Distortion On Phase Transition Properties Of The Polycrystalline Vo2 Thin Film, Langping Wang, Tiegui Lin, Yuqiang Ge, Xiaofeng Wang 2016 Harbin Institute of Technology

Dft Calculations And Experimental Study Of The Lattice Distortion On Phase Transition Properties Of The Polycrystalline Vo2 Thin Film, Langping Wang, Tiegui Lin, Yuqiang Ge, Xiaofeng Wang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fabrication Of Large Mechanically Flexible Multi-Layered Pdms Optical Devices, Robert S. Green 2016 The University of Western Ontario

Fabrication Of Large Mechanically Flexible Multi-Layered Pdms Optical Devices, Robert S. Green

Electronic Thesis and Dissertation Repository

Mechanically flexible large area polydimethylsiloxane (PDMS) optical devices are fabricated using soft-lithography techniques based on replica moulding. These non-rigid optical devices can be designed as sheets to act as either light concentrators (collectors) or diusers (illuminators) based on the position and geometry of micro-optical structures (MOSs) embedded within the sheet or imprinted on its surface. The active surface area of the device can range from less than a sq. cm to several sq. m. The performance of the large area optical device is a function of the location and geometry of micro-optical structures, thickness and shape of the flexible waveguide ...


Large Scale Monolithic Solar Panel Simulation - A Study On Partial Shading Degradation, Suhas V. Baddela, Xingshu Sun, Muhammad A. Alam 2016 Purdue University

Large Scale Monolithic Solar Panel Simulation - A Study On Partial Shading Degradation, Suhas V. Baddela, Xingshu Sun, Muhammad A. Alam

The Summer Undergraduate Research Fellowship (SURF) Symposium

Shadow-induced degradation is a major concern for both power output and long-term reliability in solar cells. Apart from the obvious fact that shading reduces the amount of solar irradiance available to solar panels, it may lead to formation of hot spots, where solar cells are forced to reverse breakdown with localized heating, and potentially, permanent damage. To get a better understanding of shadow-induced degradation, we develop an electro-thermal coupled simulator that can self-consistently solve the electrical and thermal distributions of solar panel under arbitrary shading conditions. The simulation framework consists of two part: a) compact models that can describe the ...


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev 2016 North Carolina State University at Raleigh

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of common ...


Wearable Piezotronic Devices For Heart Rate Monitoring, Adam J. Miller, Wenzhuo Wu Dr. 2016 Purdue University

Wearable Piezotronic Devices For Heart Rate Monitoring, Adam J. Miller, Wenzhuo Wu Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Self-powered multifunctional wearable devices that are capable of human-device interfacing are highly desired. Piezotronic devices utilize piezoelectricity and semiconductor properties to enable devices to have seamless interaction between human and device. One important use for piezotronic devices is for pressure sensing. Pressure sensing devices have been employed in smart skins, biomonitoring, gesture recognition, and many more applications. This study aims to create a flexible piezotronic device, specifically for use in pressure sensing to monitor heart rate. ZnO nanowires are grown on a flexible polymer substrate so that they can be made into wearable devices. A p-n heterojunction is formed by ...


Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li 2016 University of Tennessee, Knoxville

Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li

Doctoral Dissertations

Organic semiconducting materials, consisting mostly of carbon and hydrogen atoms, provide remarkable promise for electronic applications due to their easy processing, chemical tenability, low costs and environmental-friendly characteristics. For realizing electronic applications such as light emitting diodes and photovoltaic cells, charge-transfer states act as an important intermediate state for recombination and dissociation. Interestingly, magnetic field effects on semiconducting materials have been realized based on the suppression of spin mixing in the charge-transfer states. Although lots of studies have been carried out on investigating the properties of charge-transfer states, little has been done to consider the interaction between them. This thesis ...


Exploring Thermoelectric Effect Based On Multi-Layer Conductor/Organic/Conductor Devices, Qing Liu 2016 University of Tennessee, Knoxville

Exploring Thermoelectric Effect Based On Multi-Layer Conductor/Organic/Conductor Devices, Qing Liu

Doctoral Dissertations

Thermoelectric phenomena involve the simultaneous presence of both electrical and thermal currents. The entropy has been heavily used as the driving force to diffuse charge carriers between high and low temperature surfaces towards the development of Seebeck effects in thermoelectric devices. However, this driving force from entropy difference can cause an inverse relationship between Seebeck coefficient and electrical conductivity in the thermoelectric developments. Increasing the charge density can decrease the entropy difference to diffuse the charge carriers at a given temperature difference and lead to a decrease on the Seebeck coefficient developed by the entropy difference. Therefore, it is necessary ...


Contact Radius And Insulator-Metal Transition In Films Comprised Of Touching Semiconductor Nanocrystals, Deanna M. Lanigan 2016 Washington University in St. Louis

Contact Radius And Insulator-Metal Transition In Films Comprised Of Touching Semiconductor Nanocrystals, Deanna M. Lanigan

Engineering and Applied Science Theses & Dissertations

Nanocrystal assemblies are being explored for a number of optoelectronic applications such as transparent conductors, photovoltaic solar cells, and electrochromic windows. Majority carrier transport is important for these applications, yet it remains relatively poorly understood in films comprised of touching nanocrystals. Specifically, the underlying structural parameters expected to determine the transport mechanism have not been fully elucidated. In this report, we demonstrate experimentally that the contact radius, between touching heavily doped ZnO nanocrystals, controls the electron transport mechanism. Spherical nanocrystals are considered, which are connected by a circular area. The radius of this circular area is the contact radius. For ...


Thermoelectric Half-Heuslers: Synthesis, Processing, And Performance, Joseph Robert Croteau 2016 Boise State University

Thermoelectric Half-Heuslers: Synthesis, Processing, And Performance, Joseph Robert Croteau

Boise State University Theses and Dissertations

Thermoelectric half-Heusler compounds have potential to convert the heat wasted from industrial and transportation processes to useful electricity. Among the highest performing half-Heusler compounds are nano-structured bulk materials which have been arc-melted, pulverized into a nano-powder, and sintered by DC-hot press. High performing n- and p-type half-Heusler compounds with nominal composition of Hf0.25Zr0.75NiSn0.99Sb0.01 and Nb0.75Ti0.25FeSb, respectively, have been provided to us in both dense and powder form by our collaborators at the University of Houston. We consolidate these powders by SPS, refine these ...


Material And Process Engineering For Bulk Single Crystal Growth Of High Performance Scintillator Potassium Calcium Iodide, Adam Coleman Lindsey 2016 University of Tennessee, Knoxville

Material And Process Engineering For Bulk Single Crystal Growth Of High Performance Scintillator Potassium Calcium Iodide, Adam Coleman Lindsey

Doctoral Dissertations

Protection against threats of nuclear terrorism relies on the deployment of an enormous number of radiation detection devices with energy resolution to differentiate the radiological signatures of special nuclear materials amongst naturally occurring radiation and other nuisance sources. The capabilities of these devices rely upon the availability of high performance scintillator and semiconductor materials which provide useful responses in the presence of radiation. So far, few materials have been developed to a level that can supplant the use of underperforming NaI:Tl [thallium doped sodium iodide] crystals in the field due to their high cost and/or low yields of ...


Wide Bandgap Organo‐Lead Trihalide Perovskites For Solar Cells, Miao Hu 2016 University of Nebraska-Lincoln

Wide Bandgap Organo‐Lead Trihalide Perovskites For Solar Cells, Miao Hu

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Methylammonium lead trihalide perovskite (MAPbX3, where MA is methylammonium, and X is a halide)-based solar cells have been extensively investigated recently, with a demonstrated and certified solar power conversion efficiency (PCE) exceeding 20%. To further boost the PCE beyond the Schockley–Queisser limit, tandem structured solar cells have been investigated based on integrating MAPbX3 and the lower bandgap solar cells. Although the best reported efficiency for this type of tandem cells is not close to the theoretically achievable value, mixed-halide perovskite MAPbBrxI3–x is still one of the most promising candidates as the wide-bandgap light absorber for the tandem ...


The Important Contribution Of Photo-Generated Charges To The Silicon Nanocrystals Photo-Charging/Discharging-Response Time At Room Temperature In Mos-Photodetectors, Samir Chatbouri, Manel Troudi, Abdelaali Fargi, Adel Kalboussi, Abdelkader Souifi 2016 Faculty of Sciences of Monastir

The Important Contribution Of Photo-Generated Charges To The Silicon Nanocrystals Photo-Charging/Discharging-Response Time At Room Temperature In Mos-Photodetectors, Samir Chatbouri, Manel Troudi, Abdelaali Fargi, Adel Kalboussi, Abdelkader Souifi

Abdelaali Fargi

The results are reported of a detailed investigation into the photogenerated changes that occur in the capacitance–voltage (CV) characteristics of Metal-Oxide-Semiconductor (MOS) photodetector, having a silicon nanocrystals (Si-ncs) embedded in SiOx=1.5 tunnel oxide layers. In order to study the influence of photon energy on charging/discharging photo-response of nanocrystal-based MOS structures, we have examined photo-capacitance-voltage (photo-CV) measurements at both light intensities 45 μW and 75 μW and wavelengths 436 nm and 595 nm. The photo-CV measurements indicate the important contribution of photo-generated charges to the charging/discharging mechanism. The (Si-ncs) charging/discharging photo-response time is ...


Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas 2016 Macalester College

Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas

Macalester Journal of Physics and Astronomy

ZnO thin films that function as either transparent conducting oxides in solid-state photovoltaic cells or as nanocrystalline dye-absorbers in dye-sensitized solar cells have the potential to reduce the cost of producing electricity from solar energy. Although there exist many methods to produce ZnO thin films, the most economical and practical method may be oxidation of metallic Zn thin films. This research examined the utility of ex-situ thermal oxidation of DC magnetron sputtered Zn thin films in generating useful ZnO thin films for these photovoltaic applications. We annealed Zn thin films in air at 570° C in order to produce ZnO ...


Manipulation Of Surface Plasmon Resonance In Metal And Alloy Thin Films Using Dielectric Media, Benjamin DuBray Hall 2016 Rose-Hulman Institute of Technology

Manipulation Of Surface Plasmon Resonance In Metal And Alloy Thin Films Using Dielectric Media, Benjamin Dubray Hall

Graduate Theses - Physics and Optical Engineering

Surface plasmon polaritons are coherent electron oscillations that propagate along an interface between a Drude metal and a dielectric medium. The excitation of polaritons is highly dependent on the dielectric properties of the metal, the thickness of the metal, and the optical properties of the dielectric material. First, plasmonic activity is assessed for several thicknesses of silver and nickel chromium under He-Ne incidence. Relationships between film thickness and metal dielectric function are explored in both cases. To manipulate the plasmonic activity at the silver surfaces, two methods are explored. Silver oxide was grown on the surface of the silver films ...


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell 2016 University of Louisville

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application ...


Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson 2016 university of louisville

Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson

Electronic Theses and Dissertations

Scaling electronic devices has become paramount. The current work builds upon scaling efforts by developing novel synthesis methods and next generation sensing devices based on 2D materials. A new combination method utilizing thermal evaporation and chemical vapor deposition was developed and analyzed to show the possibilities of Transition Metal Dichalcogenide monolayers and heterostructures. The materials produced from the above process showed high degrees of compositional control in both spatial dimensions and chemical structure. Characterization shows controlled fabrication of heterostructures, which may pave the way for future band gap engineering possibilities. In addition, Phosphorene based field effect transistors, photodetectors, and gas ...


Digital Commons powered by bepress