Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1057 Full-Text Articles 1428 Authors 159253 Downloads 43 Institutions

All Articles in Other Materials Science and Engineering

Faceted Search

1057 full-text articles. Page 1 of 26.

K-12 Linkage For Women Engineers- Students Creating Courseware For Other Students, Lawrence Genalo, Kimberly D. Windom, Alethea Semple 2017 Iowa State University

K-12 Linkage For Women Engineers- Students Creating Courseware For Other Students, Lawrence Genalo, Kimberly D. Windom, Alethea Semple

Lawrence Genalo

Engineering education techniques have been changing at a tremendous pace over the past several years; a significant portion of these changes have been to recruit and retain women in engineering programs. Iowa State University is committed to these changes in engineering education and is implementing new programs for high school and undergraduate women interested in science and engineering related fields. The Program for Women in Science and Engineering (PWSE} began offering paid internship programs for both high school and undergraduate female students in 1987, with the objective to provide research experiences for talented women and to build their confidence in ...


Cost Effective, High Technology Classroom Delivery Systems, Lawrence J. Genalo 2017 Iowa State University

Cost Effective, High Technology Classroom Delivery Systems, Lawrence J. Genalo

Lawrence Genalo

Iowa State University is a member of the Synthesis Coalition, funded by the National Science Foundation in the inaugural year for coalitions. The other coalition partners are Cal Poly at San Luis Obispo, Cornell, Hampton, Southem, Stanford, Tuskegee, and UC Berkeley. The Synthesis Coalition is creating a National Engineering Education Delivery System (NEEDS). This will include a multimedia data base of engineering courseware modules which can be transported at network speeds for classroom delivery. In order for these lesson modules to be effectively delivered, appropriate classroom delivery systems are being designed, prototyped, and tested.


Cellulose–Hemicellulose And Cellulose–Lignin Interactions During Fast Pyrolysis, Jing Zhang, Yong S. Choi, Chang G. Yoo, Tae H. Kim, Robert C. Brown, Brent H. Shanks 2017 Iowa State University

Cellulose–Hemicellulose And Cellulose–Lignin Interactions During Fast Pyrolysis, Jing Zhang, Yong S. Choi, Chang G. Yoo, Tae H. Kim, Robert C. Brown, Brent H. Shanks

Brent H Shanks

Previously, the primary product distribution resulting from fast pyrolysis of cellulose, hemicellulose, and lignin was quantified. This study extends the analysis to the examinations of interactions between cellulose–hemicellulose and cellulose–lignin, which were determined by comparing the pyrolysis products from their native mixture, physical mixture, and superposition of individual components. Negligible interactions were found for both binary physical mixtures. For the native cellulose–hemicellulose mixture, no significant interaction was identified either. In the case of the native cellulose–lignin mixture, herbaceous biomass exhibited an apparent interaction, represented by diminished yield of levoglucosan and enhanced yield of low molecular weight ...


Corbett Special Issue Editorial, Gordon J. Miller, Gerd Meyer, Anja V. Mudring 2017 Iowa State University

Corbett Special Issue Editorial, Gordon J. Miller, Gerd Meyer, Anja V. Mudring

Anja V. Mudring

JJohn Dudley Corbett was born March 23, 1926, in Yakima, WA. He was a 1944 graduate of Yakima High School and completed his undergraduate studies, subject towartime conditions, at three institutions: North Dakota Teachers College; University of Wisconsin at Madison, where he learned general and chemical engineering; and ultimately theUniversity ofWashington in Seattle, WA, where he received a Bachelor’s degree in 1948. He earned a Ph.D. in Physical Chemistry from the University of Washington with a dissertation on “Anhydrous Aluminum Halides and Mixed Halide Intermediates” under the guidance of Prof. Norman W. Gregory, who specialized in experimental investigations ...


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang 2017 University of Nebraska - Lincoln

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is ...


Clarity Of Microstamped Identifiers As A Function Of Primer Hardness And Type Of Firearm Action, L. Scott Chumbley, J. Kreiser, T. Lizotte, O. Ohar, T. Grieve, B. King, David J. Eisenmann 2017 Iowa State University

Clarity Of Microstamped Identifiers As A Function Of Primer Hardness And Type Of Firearm Action, L. Scott Chumbley, J. Kreiser, T. Lizotte, O. Ohar, T. Grieve, B. King, David J. Eisenmann

David Eisenmann

The transfer of microstamped identifiers to the primers of fired cartridges was examined using a stereomicroscope and scanning electron microscope (SEM). The identifiers were placed on the firing pins of three different 9mm handguns, namely, a Sig Sauer, a Taurus, and a Hi-Point. Ten different brands of ammunition were fired from each handgun, 100 rounds being fired using each brand for a total of 1000 rounds fired per handgun. The quality of the markings was evaluated using a simple observation rubric. These results were compared to Vickers hardness values obtained from the ammunition primers and are discussed in light of ...


Technical Feasibility Of Selectively Separating Rare Earth Elements By Vapor Phase Extraction And Condensation, Katie Lyons 2017 Montana Tech

Technical Feasibility Of Selectively Separating Rare Earth Elements By Vapor Phase Extraction And Condensation, Katie Lyons

Graduate Theses & Non-Theses

Experiments were performed to evaluate the technical feasibility of selectively separating selected rare earth halides (bromides and chlorides) using a volatilization and condensation technique. Initially, optimum chloridizing and bromidizing roast parameters were secured in studies performed on reagent grade rare earth oxide samples and subsequently confirmed in tests performed on mineral ore and concentrate samples. The volatilization and condensation experiments were performed by placing the subject rare earth halide samples in an argon-purged multiple-zone tube furnace wherein the temperature profile was controlled to establish separate vaporization and condensation regions. Following each experiment, condensate and solid residue samples were analyzed to ...


Physical Properties Of Single Crystalline R Mg 2 Cu 9 ( R = Y , Ce − Nd , Gd − Dy , Yb ) And The Search For In-Plane Magnetic Anisotropy In Hexagonal Systems, Tai Kong, William R. Meier, Qisheng Lin, Scott M. Saunders, S. L. Bud’ko, Rebecca Flint, Paul C. Canfield 2017 Iowa State University

Physical Properties Of Single Crystalline R Mg 2 Cu 9 ( R = Y , Ce − Nd , Gd − Dy , Yb ) And The Search For In-Plane Magnetic Anisotropy In Hexagonal Systems, Tai Kong, William R. Meier, Qisheng Lin, Scott M. Saunders, S. L. Bud’Ko, Rebecca Flint, Paul C. Canfield

Qisheng Lin

Single crystals ofRMg2Cu9 (R = Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a nonlocal- moment-bearing metal with an electronic specific heat coefficient, γ ∼ 15 mJ/mol K2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied (R = Nd ...


Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden 2017 Brigham Young University - Provo

Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden

Biomedical Engineering Western Regional Conference

Application of carbon nanotube coatings to computer keyboards in order to reduce the spread of bacteria in hospitals and homes.

Keywords: carbon nanotube, bacteria, antimicrobial, keyboard, design, MRSA, biofilm


Effect Of Liquid Contamination On Hermeticity And Seal Strength Of Flexible Pouches With Lldpe, Francesca Delle Cese, Koushik Saha, S. Roy, Jay Singh 2017 California Polytechnic State University

Effect Of Liquid Contamination On Hermeticity And Seal Strength Of Flexible Pouches With Lldpe, Francesca Delle Cese, Koushik Saha, S. Roy, Jay Singh

Journal of Applied Packaging Research

Flexible packaging is a growing successful market and the majority of flexible package applications are for the food industry. The demand for process optimization and reduced production costs, has led to an increase in flexible packaging. However, fast production lines can result in contamination in the seal area. For flexible food packaging, contamination is considered any food particle or substance trapped in the seal area. Current quality control processes can detect contamination in the seal area, but it is not determined if seal contamination affects seal quality. Oil-based and sodium based snack foods are two common categories that can be ...


Verifying The Implementation Of An Anisotropic Grain Boundary Energy Model In Idaho National Lab’S Marmot, John-Michael H. Bradley, Evan D. Hansen, Jarin C. French, Yongfeng Zhang (Mentor) 2017 Brigham Young University Idaho

Verifying The Implementation Of An Anisotropic Grain Boundary Energy Model In Idaho National Lab’S Marmot, John-Michael H. Bradley, Evan D. Hansen, Jarin C. French, Yongfeng Zhang (Mentor)

Idaho Conference on Undergraduate Research

This work aims to verify the correct implementation of an anisotropic grain boundary (GB) energy model for face-centered cubic (FCC) and fluorite materials in Idaho National Laboratory’s phase field fuel performance code MARMOT. The model was recently implemented in MARMOT with the purpose of enabling higher fidelity simulations of UO2 nuclear fuels. As part of verification, tests were performed to measure the energy dependence on misorientation of high symmetry GBs in an FCC metal (Cu). The energies of the [100], [110], and [111] twist boundaries result as predicted, as do the energies of the [111] symmetric tilt boundaries ...


Design And Testing Of Flexible Lithium-Ion Batteries, Ryan C. Kramanak, Matt A. Murrow, Matt Stolfer, Jered Tyler, Aaron Moser 2017 The University of Akron

Design And Testing Of Flexible Lithium-Ion Batteries, Ryan C. Kramanak, Matt A. Murrow, Matt Stolfer, Jered Tyler, Aaron Moser

Honors Research Projects

The goal of this disquisition is to delineate the development of a material and casing suitable for flexible lithium-ion rechargeable batteries. Development of these cells is driven by increasing interest in portable and flexible electronics. The goal is to implement them into items such as smart cards, wearable electronics, novelty packages, flexible displays, and transdermal drug delivery patches. To accomplish this task, a number of individual cathode compounds were explored that used different compositions of lithium cobalt oxide and other compounds. These cells were tested in a generic and easily manufacturable cell casing. After the catholyte compound testing was completed ...


Pitting Corrosion Of 410 Stainless Steel In Hcl Solutions, Paul D. Krell 2017 The University of Akron

Pitting Corrosion Of 410 Stainless Steel In Hcl Solutions, Paul D. Krell

Honors Research Projects

410 stainless steel (SS) is a material used in HCl services, such as distillation column trays in oil refineries. Unlike other alloys, however, the oil refining industry lacks a good reference for the corrosion rate of 410 SS at the varying HCl concentrations and temperatures the material might experience as trays in crude unit distillation columns. The goal of this project is to fill that knowledge gap. The corrosion behavior of 410 SS in HCl environments of pH 0.50, 1.25, 2.25, 3.25, and 4.25 at temperatures of 38, 52, 79, and 93°C was investigated ...


The Effects Of Carboxylic Acids In Aluminum Anodizing, Abby E. Koczera 2017 University of New Hampshire

The Effects Of Carboxylic Acids In Aluminum Anodizing, Abby E. Koczera

Honors Theses and Capstones

Hard-anodized alumina coatings were formed in sulfuric acid at low temperature and high current density in the presence of carboxylic acid additives. Citric acid, trimesic acid, mellitic acid and ethylenediaminetetraacetic acid (EDTA) were utilized in varying concentrations. The additives were chosen for their capacity to form complexes with tri-valent aluminum and hence impart chemical stability to the coatings. The coatings were sealed in boiling water, and corrosion resistance was observed in a high pH solution of potassium hydroxide. The coatings were examined using scanning electron microscopy (SEM) to assess coating thickness and pore dimensions. Thicker coatings were produced when the ...


Nonlinear Dielectric Behavior Of Field-Induced Antiferroelectric/Paraelectric-To-Ferroelectric Phase Transition For High Energy Density Capacitor Application, Mingyang Li 2017 Michigan Technological University

Nonlinear Dielectric Behavior Of Field-Induced Antiferroelectric/Paraelectric-To-Ferroelectric Phase Transition For High Energy Density Capacitor Application, Mingyang Li

Dissertations, Master's Theses and Master's Reports

Electric field-induced antiferroelectric(AFE)/paraelectric(PE)-to-ferroelectric(FE) phase transitions are investigated for the associated nonlinear dielectric behavior, which could offer high dielectric capacity. The phenomenon in monolithic materials has been computed for Kittel antiferroelectric and BaTiO3 model systems using the Landau-Ginzburg-Devonshire theory. The general switching curves give values of the polarization as a function of external electric field. A similar computation is performed for particle-filled polymer-matrix composites where an internal depolarization field is considered. The polarization-electric field response changes with different depolarization factors, which demonstrate the shape and alignment of the dielectric particles embedded in polymer-matrix are key ...


Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart 2016 University of Maine

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain ...


Four-State Anti-Ferroelectric Random Access Memory, Melvin M. Vopson, Xiaoli Tan 2016 University of Portsmouth

Four-State Anti-Ferroelectric Random Access Memory, Melvin M. Vopson, Xiaoli Tan

Xiaoli Tan

Ferroelectric random access memory (FRAM) is a two-state non-volatile memory, in which information is digitally encoded using switchable remanent polarization states within a ferroelectric thin film capacitor. Here, we propose a novel non-volatile memory based on anti-ferroelectric polycrystalline ceramics, termed anti-FRAM (AFRAM). The AFRAM memory cell architecture is similar to FRAM, but it is an operation protocol. Our initial experimental demonstration of the memory effect in anti-ferroelectric ceramic shows, remarkably, that the AFRAM technology encodes data in both ferroelectric sublattices of the anti-ferroelectric medium. This results in a four-state nonvolatile memory capable of storing two digital bits simultaneously, unlike the ...


Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers 2016 University of Tennessee, Knoxville

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buer layer. Neutron reactivity reveals that these ...


Temperature Dependent Mechanical Behavior Of Solid Acids, Ryan Scott Ginder 2016 University of Tennessee, Knoxville

Temperature Dependent Mechanical Behavior Of Solid Acids, Ryan Scott Ginder

Doctoral Dissertations

Existing literature data on the creep behavior of superprotonic solid acids, which is important for their use in fuel cell applications, is scant and unreliable. Steady state creep behavior for the model material system cesium hydrogen sulfate (CHS) is probed using nanoindentation and corroborated using uniaxial compression testing. To facilitate nanoindentation creep result interpretation, a radial flow model of power law indentation creep is developed. This model is compared with the related model from Bower, et. al. for several pre-existing literature datasets showing that the nonlinear, steady state creep law underpinning both appears valid for power law indentation creep.


Evaluation Of Efficiency Of Various Materials To Shield From Radiation In Space Using The Monte Carlo Transport Code Called Fluka, Roman Savinov 2016 California Polytechnic State University, San Luis Obispo

Evaluation Of Efficiency Of Various Materials To Shield From Radiation In Space Using The Monte Carlo Transport Code Called Fluka, Roman Savinov

Master's Theses and Project Reports

The purpose of this study is to improve spacecraft shielding from radiation in space. It focuses on the evaluation of shielding efficiency of different materials. The efficiency of a shield is evaluated by the dose profile within the shield and the amount of dose absorbed by a target using the Monte Carlo transport code called FLUKA. The output of this code is validated by recreating the experiments from published papers and comparing the results. Once the FLUKA’s output is validated, the efficiency of sixteen materials, subject to SPE and GCR sources, are evaluated. The efficiency comparison is made by ...


Digital Commons powered by bepress