Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,018 Full-Text Articles 1,494 Authors 212,917 Downloads 53 Institutions

All Articles in Other Materials Science and Engineering

Faceted Search

1,018 full-text articles. Page 1 of 25.

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev 2018 Purdue University

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer ...


Computational Catalysis: Creating A User-Friendly Tool For Research And Education, Kevin P. Greenman, Peilin Liao 2018 University of Michigan - Ann Arbor

Computational Catalysis: Creating A User-Friendly Tool For Research And Education, Kevin P. Greenman, Peilin Liao

The Summer Undergraduate Research Fellowship (SURF) Symposium

Catalysis is used in a significant portion of production processes in the industrialized world, including most processing of chemicals and fuels. This makes maximizing the efficiency of catalysts a high priority. However, the immense number of candidates for new catalysts precludes the possibility of testing all of them by experiments. Density functional theory (DFT) has been widely and successfully used to calculate material properties relevant to catalysis and to screen promising candidates for experimental testing, but there currently exists no publicly- available, user-friendly tool for performing these DFT calculations. This work details the development of such a tool for nanoHUB ...


Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs 2018 Western Kentucky University

Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs

Masters Theses & Specialist Projects

Gold monolayer-protected nanoclusters (MPCs) with average diameters of 1-5 nm protected by alkane- and arenethiolates were synthesized. Mixed-monolayer protected nanoparticles (MMPCs) were prepared by functionalizing hexanethiolate-protected MPCs with either 11-mercaptoundecanoic acid (MUA-MMPC), 11-mercaptoundecanol (MUO-MMPC), or 4-aminothiophenol (ATP-MMPC) using ligand place exchange. Presentation of various chemical reagents such as nucleophile, acid, or base and change in physical environment through ultrasonic and thermal irradiation resulted in changes to particles and their physical properties. Thermogravimetric analysis (TGA) was used to measure maximum temperature of the derivated thermogravimetric peaks (Tmax,DTG) as a means of comparing temperature dependence of mass loss. The absorption spectrum ...


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks 2018 Chulalongkorn University Demonstration Secondary School

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge it ...


Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong 2018 National Junior College

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong

The International Student Science Fair 2018

Lithium ion batteries (LIBs) are commonly found in many portable electronic appliances due to their ability to be rechargeable. Currently, commercial anodes in Li-ion batteries (graphite) have a theoretical capacity of around 372 mAh/g, while FeCo2O4 that will be investigated as the anode material has a theoretical capacity of 901.985mAh/g, more than double of the current commercial anode’s capacity. Earlier work done by Sharma et al also showed that FeCo2O4 has a very promising initial capacity of 827mAh/g. As such, the engineering goal is to produce a battery that will have a higher capacity than ...


Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong 2018 National Junior College

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong

The International Student Science Fair 2018

Lithium ion batteries (LIBs) are commonly found in many portable electronic appliances due to their ability to be rechargeable. Currently, commercial anodes in Li-ion batteries (graphite) have a theoretical capacity of around 372 mAh/g, while FeCo2O4 that will be investigated as the anode material has a theoretical capacity of 901.985mAh/g, more than double of the current commercial anode’s capacity. Earlier work done by Sharma et al also showed that FeCo2O4 has a very promising initial capacity of 827mAh/g. As such, the engineering goal is to produce a battery that will have a higher capacity than ...


Development Of Test Methods For Measuring Fiber Misalignment And Warping In Honeycomb-Core Composite Panels, Wyatt Taylor, Haripriya Nilakantan 2018 California Polytechnic State University, San Luis Obispo

Development Of Test Methods For Measuring Fiber Misalignment And Warping In Honeycomb-Core Composite Panels, Wyatt Taylor, Haripriya Nilakantan

Materials Engineering

Zodiac Aerospace manufactures honeycomb-core composite panels to be used in aircraft cabin interior components. During the manufacturing process, some panels become warped such that they cannot be used for their designated aircraft cabin components. As a result, these panels are scrapped because they cannot be recycled. About 44 to 90% of panels become warped during manufacturing. Warping is caused by many factors, including layer misalignment, processing parameters such as temperature and pressure gradients, and fiber misalignment in the prepregs. Currently, Zodiac does not have any data on the effect of fiber misalignment on panel warpage, so a testing protocol was ...


Solar Cell Potential Induced Degradation Sensor, Luc Alexandre Tousignant 2018 California Polytechnic State University, San Luis Obispo

Solar Cell Potential Induced Degradation Sensor, Luc Alexandre Tousignant

Materials Engineering

It is important to maintain Photovoltaic (PV) cells and protect them from damage mechanisms like Potential Induced Degradation (PID), which can contribute to shorter lifespans and lower efficiencies. Current leakage through cell encapsulation can cause charge migration in PV cells that reduces the maximum quantum efficiency, which is the cause of PID. An experiment was setup to determine the feasibility of a non-silicon sensor able to produce similar leakage behavior to traditional PV cells under recorded humidity conditions. Thin sheet metals were encapsulated in EVA, a common PV encapsulant polymer, and mounted in aluminum framing. Three sensors, along with a ...


Next Generation Protocol: Innovating A Resilient Future, Andrew Steven Rudnick, Jamie Cannady, Joe Decesaro, Juan A. Ortiz Salazar 2018 California Polytechnic State University, San Luis Obispo

Next Generation Protocol: Innovating A Resilient Future, Andrew Steven Rudnick, Jamie Cannady, Joe Decesaro, Juan A. Ortiz Salazar

Materials Engineering

Conventional practices do not account for product life beyond end-of-sale – these practices are not sustainable. We have developed an end-of-life protocol that includes a metric that we call the Recovery Rating. The objectives of this Next Generation Protocol, beyond supporting the United Nations’ Sustainable Development Goals, are to encourage the production of goods designed for recovery and to promote the collaboration between consumers, the public, and the private sector to recover goods at their end-of-life. The Recovery Rating that we propose evaluates and quantifies recovery potential of products. The Recovery Rating, which is normed against embodied energy from the Cambridge ...


Phase Change Materials For Thermal Management Of Kennedy Library Study Rooms, Colin J. Empey 2018 California Polytechnic State University, San Luis Obispo

Phase Change Materials For Thermal Management Of Kennedy Library Study Rooms, Colin J. Empey

Materials Engineering

The overall purpose of this study was to find a phase change material (PCM) or a combination of PCMs as a thermal management solution for the fifth-floor study rooms in Kennedy Library. First and foremost, the PCM must take in heat to change phase. A PCM would be a better candidate the more heat it needs to change phase. To quantify this, the team utilized a DSC to find how much energy each candidate PCM required to change phase. Coconut oil, palm oil, and white chocolate were found to have the best ability to absorb heat. Secondly, the PCM should ...


In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila 2018 California Polytechnic State University, San Luis Obispo

In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila

Materials Engineering

Scanning electron microscopy (SEM) video recording is used to characterize the solidification of small volumes of 99.999% pure gallium (Ga) and eutectic gallium-indium (eGaIn) under a high vacuum environment. Specimen are superheated to 55℃ using a hot plate, cast into spherical droplets, and cooled in situ by means of a Peltier cooling stage. Special attention is given to the preparation of the specimen prior to viewing because of gallium and its alloys’ nature to form an oxide layer when melted and air cooled. The oxide acts as a skin that inhibits the observation of microstructural features during solidification. Heated ...


Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau 2018 California Polytechnic State University, San Luis Obispo

Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau

Mechanical Engineering

No abstract provided.


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik 2018 Louisiana State University and Agricultural and Mechanical College

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Influence Of Impact Conditions On Feedstock Deposition Behavior Of Cold-Sprayed Fe-Based Metallic Glass, Constance Ziemian, Wendelin Wright, David E. Cipoletti 2018 Bucknell University

Influence Of Impact Conditions On Feedstock Deposition Behavior Of Cold-Sprayed Fe-Based Metallic Glass, Constance Ziemian, Wendelin Wright, David E. Cipoletti

Faculty Journal Articles

Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48 Mo14 Cr15 Y2 C15 B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and ...


Optically Active Dye-Based Systems Templated By Dna Exhibiting Excitonic Delocalization, Brittany Lynn Cannon 2018 Boise State University

Optically Active Dye-Based Systems Templated By Dna Exhibiting Excitonic Delocalization, Brittany Lynn Cannon

Boise State University Theses and Dissertations

The concept of quantum computing was first developed in the early 1980’s. The attraction of quantum computers is their potential capacity to solve extremely complex problems, such as factorization, on a timescale far faster than that of classical computers. However, realization of quantum computation is currently in its infancy, and recent implementations possess serious drawbacks that reduce their appeal. Some challenges of current designs include the necessity to cool the systems using liquid helium to near absolute zero temperatures (15 mK) in order to maintain sufficiently long-lifetimes of the Qbits (i.e., unit of quantum information), difficulty with scaling ...


Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington 2018 The University of Western Ontario

Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington

Electronic Thesis and Dissertation Repository

Atomic layer deposition (ALD) is a thin film deposition technique that has a rich history of being an enabling technique. This vapor phase deposition process can produce a variety of thin films and nanostructures. ALD is based on sequential, self-limiting reactions and provides angstrom level control over film growth. Furthermore, ALD allows for conformal deposition on high-aspect ratio structures and can provide tunable film composition. As nanotechnology marches forward, the development of nanomaterials has significantly advanced. Additional functionality can be imparted to nanomaterials by using surface modification techniques. Given the advantages of ALD, this technique has become a powerful tool ...


Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme 2018 Brigham Young University

Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme

Undergraduate Honors Theses

Machine learning is being adopted in various areas of materials science to both create predictive models and to uncover correlations which reveal underlying physics. However, these two aims are often at odds with each other since the resultant predictive models generally become so complex that they can essentially be described as a black box, making them difficult to understand. In this study, complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain. Supervised machine learning is employed, in the form of J-48 decision trees. In one approach, strain is incorporated as an ...


Waste Management By Waste: Removal Of Acid Dyes From Wastewaters Of Textile Coloration Using Fish Scales, S M Fijul Kabir 2018 Louisiana State University

Waste Management By Waste: Removal Of Acid Dyes From Wastewaters Of Textile Coloration Using Fish Scales, S M Fijul Kabir

LSU Master's Theses

Removal of hazardous acid dyes by economical process using low-cost bio-sorbents from wool industry wastewaters is of a pressing need, since it causes skin and respiratory diseases and disrupts other environmental components. Fish scales (FS), a by-product of fish industry, a type of solid waste, are usually discarded carelessly resulting in pungent odor and environmental burden. In this research, the FS of black drum (Pogonias cromis) were used for the removal of acid dyes (acid red 1 (AR1), acid blue 45 (AB45) and acid yellow 127 (AY126)) from wool industry wastewaters by absorption process with a view to valorizing fish ...


An Evaluation Of Induction Heating In Healthcare Food Industry, Barrett Alexander Hampton 2018 Western Kentucky University

An Evaluation Of Induction Heating In Healthcare Food Industry, Barrett Alexander Hampton

Masters Theses & Specialist Projects

This thesis addresses the problem healthcare facilities are having in maintaining proper food temperatures while transporting meals to patients after food has left the kitchen area. Induction heat has been a known method for generating heat for many years. The commercial food industry currently uses this technology, which is beginning to appear in the residential sector as well because of developments made by manufacturers. This study focuses on the top commercial brand models of induction heaters and the supporting materials currently used to create heat sources to maintain food temperatures in hospitals and long term care facilities.

The research in ...


Laser Ablation Synthesis Of Energetic Graphitic Coated Aluminum Nanoparticles, Camille E. Bergin 2018 University of Tennessee, Knoxville

Laser Ablation Synthesis Of Energetic Graphitic Coated Aluminum Nanoparticles, Camille E. Bergin

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

This poster presents a research initiative in collaboration with the US Army Research Lab (ARL) to synthesize carbon-coated aluminum (Al) nanoparticles (NPs) as energetic materials via laser ablation in organic solutions. Nanomaterials have gained widespread attention recently from an array of scientists and engineers for their desired physical and chemical properties believed to be a product of their high ratio of surface area to volume, thus making them favorable for a wide variety of applications. Specifically, here Al NPs are favored for their energetic characteristics and usually employed as solid-state propellants. However, it is challenging and unsafe to preserve pristine ...


Digital Commons powered by bepress