Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

2,179 Full-Text Articles 3,195 Authors 900,485 Downloads 61 Institutions

All Articles in Metallurgy

Faceted Search

2,179 full-text articles. Page 1 of 45.

Effect Of Dispersions Of Al2o3 On The Physical And Mechanical Properties Of Pure Copper And Copper-Nickel Alloy, Samah El-khatib, A. H. Elsayed, A. Y. Shash, A. El-Habak 2022 Future University in Egypt (FUE)

Effect Of Dispersions Of Al2o3 On The Physical And Mechanical Properties Of Pure Copper And Copper-Nickel Alloy, Samah El-Khatib, A. H. Elsayed, A. Y. Shash, A. El-Habak

Future Engineering Journal

This paper illustrates the mechanical and physical properties of pure Cu and Cu-Ni (50-50 wt. %) alloy mixed with Al2O3 (1-4 wt. %) as micro-particles reinforcement materials. The attained composite alloy specimens' characteristics were estimated such as microstructure, relative density, electrical and thermal conductivity, hardness, and compression yield stress properties to adjust the suitable optimum percentage of reinforcing material which has the best physical and mechanical properties with different main matrix materials whether pure Cu powder or Cu-Ni mechanical alloy. The micron-sized Al2O3 was added to enhance the mechanical and physical properties of the pure Cu ...


Effect Of Oxygen Equivalence On The Strength And Toughness Of Ti-6al-4v Forgings, Kira Baylor, Clarissa Drouillard 2022 California Polytechnic State University, San Luis Obispo

Effect Of Oxygen Equivalence On The Strength And Toughness Of Ti-6al-4v Forgings, Kira Baylor, Clarissa Drouillard

Materials Engineering

Tensile testing and fracture toughness testing were conducted to establish a numerical relationship between interstitial content and performance in forged Ti-6Al-4V. The value of oxygen equivalence was used to represent the interstitial content by combining the weight percent of oxygen, carbon, and nitrogen. The correlation between oxygen equivalence and mechanical properties can be used to accurately predict the performance of forged parts. Samples of forged parts with varying levels of interstitial content were subjected to a recrystallization anneal at 75 F below the beta transus temperature to decrease microstructure variability across parts with a second anneal at 1300 F to ...


Analysis Of Novel Corrosion Resistant Maraging Steels For Use In Additive Manufacturing, Bradley Michael Samuel, James Knowlton Smith 2022 California Polytechnic State University, San Luis Obispo

Analysis Of Novel Corrosion Resistant Maraging Steels For Use In Additive Manufacturing, Bradley Michael Samuel, James Knowlton Smith

Materials Engineering

Stainless maraging steel has been proven to be an industry standard material for plastic injection molds. Its high hardness and corrosion resistance extend the lifetime of the tool. This alloy system is also well-suited to additive manufacturing, which can be utilized to form internal cooling channels, further increasing tool life. Using Rapid Alloy Development (RAD) Oerilkon METCO is developing a new composition of stainless maraging tool steel that has high hardness/strength, is corrosion resistant, and has additive-capable melting and solidification properties. This study tests the hardness and corrosion resistance of the new RAD alloys against the current market competitor ...


Non-Destructive Material Analysis Of Metals And Composites Via Thermography, Jonathan R. Doubt, James L. Chapman 2022 California Polytechnic State University, San Luis Obispo

Non-Destructive Material Analysis Of Metals And Composites Via Thermography, Jonathan R. Doubt, James L. Chapman

Materials Engineering

The Naval Surface Warfare Center, Port Hueneme Division, is interested in the development of non-destructive damage assessment of shipboard materials via drones at distance. Long Pulsed Thermography (LPT), a method of non-destructive evaluation, was investigated as a possible method for detecting damage in metals (5005h24 Al alloy and 1008 carbon steel) and composites (aramid fiber honeycomb sandwich structure) at distances from 0.5 m to 3.0 m. LPT was conducted using two 1000 W can lights to heat the samples, and a FLIR E8-XT thermal camera. The images were then analyzed using ImageJ software to determine if damage could ...


Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson 2022 University of Maine

Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson

Electronic Theses and Dissertations

Bound Metal Deposition (BMD) is a novel metal additive manufacturing technology in which a metal powder-binder composite paste is layer-wise extruded to form a part, which is then debound and sintered into a solid metal part. Although promising, BMD suffers from shrinkage-induced warpage and an inability to produce fine length scale features. This research addresses these problems by: (1) characterizing warpage of planar parts, and (2) developing a novel laser ablated process to create fine length scale features. First, a 12-factor resolution IV fractional-factorial design of experiments (DOE) was conducted to determine the warpage of planar parts as a function ...


Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan 2022 University of Tennessee, Knoxville

Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan

Doctoral Dissertations

Nuclear energy technology can be exponentially advanced using advanced manufacturing, which can drastically transform how materials, structures, and designs can be built. Ultrasonic Additive Manufacturing (UAM) represents one of the four main additive manufacturing methods, although it is also the newest. As UAM technology and applications develop, a fundamental understanding of the bonding mechanism is crucial to fully realize its potential. Currently UAM bonding is considered to occur through breaking down surface asperities and removing surface oxides. Plastic deformation occurs although its role is currently unclear. This research analyzes material configurations in a variety of geometries, with similar and dissimilar ...


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals 2022 University of Tennessee, Knoxville

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent ...


Effect Of Micro-Structural Dispersity Of Simo Ductile Iron On High Temperature Performance During Static Oxidation, Semen Naumovich Lekakh, Asebi Bofah, Larry A. Godlewski, Mei Li 2022 Missouri University of Science and Technology

Effect Of Micro-Structural Dispersity Of Simo Ductile Iron On High Temperature Performance During Static Oxidation, Semen Naumovich Lekakh, Asebi Bofah, Larry A. Godlewski, Mei Li

Materials Science and Engineering Faculty Research & Creative Works

High silicon and molybdenum (SiMo) ductile iron is commonly used for car exhaust systems, and its micro-structural dispersity depends on intrinsic parameters, which include alloy composition and inoculation efficiency, as well as extrinsic factors, such as casting wall thickness and molding material, which define cooling rate during solidification. Micro-structural dispersity is referred to as the degree of heterogeneity of sizes of structural constituencies within the microstructure. A variation in the micro-structural dispersity could impact the high temperature performance of SiMo ductile iron during static oxidation and transient thermo-mechanical loading conditions. In this study, static high temperature tests were performed on ...


Effects Of Carrier, Leveller, And Booster Concentrations On Zinc Plating From Alkaline Zincate Baths, Abdul Jalil Mohammed, Michael S. Moats 2022 Missouri University of Science and Technology

Effects Of Carrier, Leveller, And Booster Concentrations On Zinc Plating From Alkaline Zincate Baths, Abdul Jalil Mohammed, Michael S. Moats

Materials Science and Engineering Faculty Research & Creative Works

Organic additives are required for alkaline zincate plating baths to obtain an acceptable coating on steel for corrosion protection. The effects and possible interactions of three commercial additives (Eldiem Carrier, Eldiem Booster, and Bright Enhancer 2x on zinc electrodeposition from a high-concentration alkaline zincate bath were investigated. Visually acceptable deposits were produced within the current density range of 130 to 430 A m-2 for most additive conditions examined. Over concentration ranges examined, decreasing the booster concentration led to brighter zinc deposits, and an interaction between the carrier and the booster was detected. The additives fostered the formation of compact ...


Control Of High-Temperature Static And Transient Thermomechanical Behavior Of Simo Ductile Iron By Al Alloying, Semen Naumovich Lekakh, Catherine E. Johnson, L. Godlewski, Mei Li 2022 Missouri University of Science and Technology

Control Of High-Temperature Static And Transient Thermomechanical Behavior Of Simo Ductile Iron By Al Alloying, Semen Naumovich Lekakh, Catherine E. Johnson, L. Godlewski, Mei Li

Materials Science and Engineering Faculty Research & Creative Works

Silicon and molybdenum (SiMo) ductile iron is commonly used for exhaust manifolds because these components experience thermal cycling in oxidizing environment, which requires resistance to fatigue during transient thermomechanical loads. Previous studies have demonstrated that alloying elements, such as Al, to SiMo ductile iron reduces the amount of surface degradation during static high-temperature exposure. However, deterioration of sphericity of the graphite nodules and a decrease in ductility could affect the tendency of cracking during thermal cycling. In this article, the effect of Al alloying on static and transient thermomechanical behavior of SiMo ductile iron was investigated to optimize the amount ...


Induction Brazing, Austin Squire, Scott Compton, Logan Hathaway, Michael Fleming 2022 The University of Akron

Induction Brazing, Austin Squire, Scott Compton, Logan Hathaway, Michael Fleming

Williams Honors College, Honors Research Projects

Our team would like to research and explore ways of designing a portable device that uses induction heating/brazing to connect two exhaust pipes together.


Functionally Magnetic Gradient Copper-Nickel Material Fabricated Via Directed Energy Deposition, Vy Tran Phuong Nguyen 2022 West Virginia University

Functionally Magnetic Gradient Copper-Nickel Material Fabricated Via Directed Energy Deposition, Vy Tran Phuong Nguyen

Graduate Theses, Dissertations, and Problem Reports

Functionally gradient materials (FGMs) of CuSn10 and Inconel 718 were fabricated via a hybrid directed energy deposition (DED) system. The objective of the present thesis is to determine the feasibility of manufacturing CuSn10 and Inconel 718 FGMs via DED and investigate the physical and mechanical properties and the microstructures of the resulting FGMs. The physical tests comprised of conductivity and Seebeck coefficient measurements. The microstructure analysis and mechanical testing include microscopic imaging, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and hardness test. In addition, compressive strength test was performed to analyze the interface bonding behaviors.


Austenitic, Duplex, And Lean Duplex Stainless Steel Critical Pitting Temperature In Simulated Concrete Environment, Bobby Giebel 2022 The University of Akron

Austenitic, Duplex, And Lean Duplex Stainless Steel Critical Pitting Temperature In Simulated Concrete Environment, Bobby Giebel

Williams Honors College, Honors Research Projects

In this work, the critical pitting temperature (CPT) will be observed for a selection of austenitic (316LN and 24100) and duplex (2205), and lean duplex (2304, 2001) stainless steels in simulated concrete pore solution. To study the influence of temperature on the pitting stability of the stainless steels, three temperatures were tested: 25oC, 45oC, and 65oC for cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS). Electrochemical properties of the interfaces we studied via EIS analysis. Kinetics were studied via CPP testing. To reveal the critical pitting temperature of the stainless steels, cyclic thermammetry was used. Characterization of the pits ...


Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler IV 2022 Georgia Southern University

Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv

Electronic Theses and Dissertations

According to the Hall-Petch equation, the refinement of grains in metals increases the yield strength of the material. Austenite grain size influences the fineness of microstructural constituents in the ferrous alloys. It is well studied that cerium and titanium refine the austenite in steels and some gray irons, but no studies have been done to systematically explore the effects of cerium and titanium additions on austenite in ductile iron. This study sought to determine the effects of selected levels of these elements on the grain size within ductile iron. A hypoeutectic iron was chosen for testing as the proeutectic phase ...


Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams 2021 Mississippi State University

Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams

Theses and Dissertations

High hardness steels (HHS) are vulnerable to hydrogen embrittlement, which can lead to rapid degradation of mechanical properties. Improved resistance to hydrogen embrittlement would be beneficial to many industries including construction, automotive, and military. A comparison study was performed to assess the hydrogen susceptibility of select commercially available and in-house designed HHS alloys. Slow strain rate tensile tests, performed with specimens charged with various levels of hydrogen, provided a macroscopic view of the onset of hydrogen embrittlement. Hydrogen permeation and thermal desorption spectroscopy tests determined the uptake and diffusivity of hydrogen through the material. The evaluation of hydrogen susceptibility for ...


The Process-Structure-Property-Performance Of Aisi 1020​, Jonathan Wellman, Tate James, Robbie Christman, Brian Broom 2021 Mississippi State University

The Process-Structure-Property-Performance Of Aisi 1020​, Jonathan Wellman, Tate James, Robbie Christman, Brian Broom

ME 4133/6133 Mechanical Metallurgy

AISI 1020 is widely used in many different industries due to its high strength, high ductility, high machinability, and good weldability. AISI 1020 has a number of applications. Low carbon steel can be used on a macroscale to build bridges, and low carbon steel can be used on smaller scales such as Lawnmower blades. Low carbon steel is the material of choice for lawn mower blades because of its ability to bend before it breaks. The ductile attribute of low carbon steel also has many other benefits.


Ti-6al-7nb Utilization In Surgical Implants, Michael O. Fleming 2021 Mississippi State University

Ti-6al-7nb Utilization In Surgical Implants, Michael O. Fleming

ME 4133/6133 Mechanical Metallurgy

This presentation discusses the processing, structure, properties, and performance of Ti-6Al-7Nb in relation to use as a surgical implant.


Development Of Pspp Map For Stainless Steel Alloys Used In A Marine Environment, Jarrett D. Hawkins 2021 Mississippi State University

Development Of Pspp Map For Stainless Steel Alloys Used In A Marine Environment, Jarrett D. Hawkins

ME 4133/6133 Mechanical Metallurgy

A process-structure-properties-performance map will be created for these alloys focusing on the modification of the structure or composition and outlining the processes required and the affected properties. A thorough review of different chemical alloys, grain refining methods, and grain boundary compositions for several alloys and their corresponding property effects. Also plan to review material treatment processes and standard refining methods for stainless steels. The performance of these metals will be evaluated for property requirements in regards to strength, toughness, with an emphasis on corrosion resistance.


Tungsten: The Strongest Natural Metal On Earth, Haley E. Holland, Razan Khadka, Lee Marble, Kaleb Tutor 2021 Mississippi State University

Tungsten: The Strongest Natural Metal On Earth, Haley E. Holland, Razan Khadka, Lee Marble, Kaleb Tutor

ME 4133/6133 Mechanical Metallurgy

The overall objective of this project was to construct a process-structure-property-performance (PSPP) map for a chosen metallic material. The material chosen by the group is tungsten (W). Tungsten is a rare, naturally occurring element and is usually found in the form of ores. It is known predominantly for its ability to withstand extreme temperatures, as well as its high tensile strength. The PSPP map displays many specifications of tungsten in each of the four categories and further details regarding each specific linkage, or subcategory, within the map are written throughout the research paper.

Along with the four specific categories outlined ...


Analysis Of Titanium Alloy Ti-6al-4v, Hunter C. Smith, Gordin Smith 2021 Mississippi State University

Analysis Of Titanium Alloy Ti-6al-4v, Hunter C. Smith, Gordin Smith

ME 4133/6133 Mechanical Metallurgy

Titanium alloy Ti-6Al-4V was chosen for examination, more specifically, the Properties and Performance of the alloy. The students will share the responsibility of examining the attributes of the material. The team members participate evenly in performing research, producing calculations, and constructing the final report. Contained herein is the information gathered through research conducted thus far.

The performance of the material will be related to the processing methods of the material. This relationship forms the basis of cost analysis. The students will examine the atomic characteristics and crystalline structure to determine the effects of the alloyed materials on properties such as ...


Digital Commons powered by bepress