Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

12,097 Full-Text Articles 18,659 Authors 2,815,725 Downloads 138 Institutions

All Articles in Materials Science and Engineering

Faceted Search

12,097 full-text articles. Page 6 of 343.

Synthesis And Characterization Of Rapidly-Degrading Polyanhydrides As Vaccine Adjuvants, Sean M. Kelly, Akash Mitra, Srishti Mathur, Balaji Narasimhan 2019 Iowa State University

Synthesis And Characterization Of Rapidly-Degrading Polyanhydrides As Vaccine Adjuvants, Sean M. Kelly, Akash Mitra, Srishti Mathur, Balaji Narasimhan

Chemical and Biological Engineering Publications

There is a currently a need to develop adjuvants that are best suited to simultaneously enhance immune responses, induce immunologic memory, improve patient compliance (i.e., reduce doses and inflammation), and provide vaccine shelf stability for stockpiling and global deployment to challenging environments. Biodegradable polyanhydrides have been investigated extensively to overcome such challenges. It has been shown that controlling copolymer composition can result in chemistry-dependent immunomodulatory capabilities. These studies have revealed that copolymers rich in sebacic acid (SA) are highly internalized by antigen presenting cells and confer improved shelf stability of encapsulated proteins, while copolymers rich in 1,8-bis(p-carboxyphenoxy ...


Strengthening Of Corroded Steel Structures Using Cfrp – An Experimental Review, Ghada El-Mahdy Ph.D., P.Eng, Abdallah H. Yassin, Abdel El Rahman Khaled 2019 Arab Contractors

Strengthening Of Corroded Steel Structures Using Cfrp – An Experimental Review, Ghada El-Mahdy Ph.D., P.Eng, Abdallah H. Yassin, Abdel El Rahman Khaled

Civil Engineering

Fibre reinforced polymers (FRP) have been widely used to strengthen reinforced concrete structures, however, nowadays their use to strengthen steel structures is under investigation. In particular, the need to strengthen corroded steel structures found in aggressive environments, such as marine environments, which have undergone a reduction in cross-sectional area and hence a reduction in their load-carrying capacity is in need of studying. The main problems that arise when using carbon fibre reinforced polymer (CFRP) sheets to strengthen steel structures is the weakness in the interfacial bond between the CFRP and the steel surface, the thinness of CFRP sheet, and the ...


Retrofit Of Corroded Corrugated Metal Culverts Using Gfrp Slip-Liner, RahulReddy ChennaReddy 2019 University of New Mexico

Retrofit Of Corroded Corrugated Metal Culverts Using Gfrp Slip-Liner, Rahulreddy Chennareddy

Civil Engineering ETDs

Culverts are water conveyance structures, typically used to allow water flow and maintain a balance between the flow streams without interrupting structures such as highways and bridges. Corrugated metal pipes (CMPs) have been used as culverts in North America since the 1950s because of their low cost and simple construction method. Today, the corrosion of CMPs is a major problem faced by all U.S. Departments of Transportation. There is an urgent need to provide an efficient solution, one that is corrosion-resistant, to retrofit thousands of corroded CMPs across the country. High specific strength, high strength to weight ratio, corrosion ...


Expanding The Palette: Synthesizing Microencapsulated Organic Phase Change Materials In Metallic Matrices For Transient Thermal Applications, Melissa Kate McCann 2019 Washington University in St. Louis

Expanding The Palette: Synthesizing Microencapsulated Organic Phase Change Materials In Metallic Matrices For Transient Thermal Applications, Melissa Kate Mccann

Engineering and Applied Science Theses & Dissertations

As the demand for smaller and faster electronics increases, it becomes increasingly challenging to effectively manage the generated heat without hindering device performance in applications whose thermal profiles are dominated by pulsed thermal loads. Heat propagation in a system can be characterized by steady or transient state heat transfer. In steady state, the temperature at any particular point remains constant after thermal equilibrium is reached. In a transient state, the temperature within a system varies over time. The changing parameters and time dependency associated with a transient regime make heat transfer calculations far more complex than in a steady state ...


Effect Of Incorporating Pottery And Bottom Ash As Partial Replacement Of Cement, Bassam A. Tayeh, Doha M. AlSaffar, Lawend K. Askar, Asmahan Issa Jubeh 2019 The Islamic University of Gaza

Effect Of Incorporating Pottery And Bottom Ash As Partial Replacement Of Cement, Bassam A. Tayeh, Doha M. Alsaffar, Lawend K. Askar, Asmahan Issa Jubeh

Karbala International Journal of Modern Science

This study addressed the environmental constraints in cement produc­tion. Ordinary Portland cement (OPC) was replaced with pottery powder (PP, produced by grinding locally available pottery) and bottom ash (BA) at 10%, 20% and 30% of cement mass. Moreover, 4% calcium chloride solution (CaCl2.2H2O) was used as mixing water. Material properties, such as standard consistency, setting time and compressive strength, were measured with different percentages of OPC replacement with PP and BA. Results indicated that the replacement with PP and BA increased the water demand to achieve the standard consistency. These results revealed that the strength ...


Cdse Quantum Dots Synthesis Laboratory Course For High School Students, Danlin Zuo, Gyuseok Kim, David Jones 2019 Singh Center for Nanotechnology

Cdse Quantum Dots Synthesis Laboratory Course For High School Students, Danlin Zuo, Gyuseok Kim, David Jones

Protocols and Reports

Cadmium selenide quantum dot is a fascinating subject for leading high school students to the quantum world. An 8-hour laboratory course for up to 12 high school students is proposed. The 8-hour course consist of two 4-hours sections. This laboratory course includes the quantum dot syntheses, absorption and emission characterization, and data analysis. The proposes process runs at relatively lower temperature which means safe and easy, and shows apparent experimental results.


Elucidation Of The Factors Affecting The Production And Properties Of Novel Wood Composites Made Using Renewable Nanomaterials As A Binder, Ezatollah Amini 2019 University of Maine

Elucidation Of The Factors Affecting The Production And Properties Of Novel Wood Composites Made Using Renewable Nanomaterials As A Binder, Ezatollah Amini

Electronic Theses and Dissertations

A novel application of cellulose nanofibrils (CNF) as a binding agent is proposed. In this work the utilization of CNF as a complete replacement for the conventional resin-adhesives in the formulation of particleboard (PB) was evaluated. PB panels with varying CNF contents and target densities were produced using a two-step (i.e. cold and hot) pressing process. For initial evaluation, the mechanical and physical properties of the manufactured panels were determined. The need to remove a considerable amount of water from the wood particle (WP)-CNF mixture during cold pressing, motivated the study of the furnish dewatering behavior. Dewatering was ...


Multiscale Modeling Of Fracture In Quasi-Brittle Materials Using Bifurcation Analysis And Element Elimination Method, Keyvan Zare Rami 2019 University of Nebraska-Lincoln

Multiscale Modeling Of Fracture In Quasi-Brittle Materials Using Bifurcation Analysis And Element Elimination Method, Keyvan Zare Rami

Civil and Environmental Engineering Theses, Dissertations, and Student Research

Analyzing the fracture of heterogeneous materials is a complex problem, due to the fact that the mechanical behavior of a heterogeneous material is strongly dependent on a variety of factors, such as its microstructure, the properties of each constituent, and interactions between them. Therefore, these factors must be effectively taken into account for accurate analysis, for which the multiscale method has been widely used. In this scheme, the computational homogenization method is used to obtain the effective macroscopic properties of a heterogeneous material based on the response of a Representative Volume Element (RVE). The growth of damage in an RVE ...


Anomalous Stranski-Krastanov Growth Of (111)-Oriented Quantum Dots With Tunable Wetting Layer Thickness, Christopher F. Schuck, Simon K. Roy, Trent Garrett, Paul J. Simmonds 2019 Boise State University

Anomalous Stranski-Krastanov Growth Of (111)-Oriented Quantum Dots With Tunable Wetting Layer Thickness, Christopher F. Schuck, Simon K. Roy, Trent Garrett, Paul J. Simmonds

Materials Science and Engineering Faculty Publications and Presentations

Driven by tensile strain, GaAs quantum dots (QDs) self-assemble on In0.52Al0.48As(111)A surfaces lattice-matched to InP substrates. In this study, we show that the tensile-strained self-assembly process for these GaAs(111)A QDs unexpectedly deviates from the well-known Stranski-Krastanov (SK) growth mode. Traditionally, QDs formed via the SK growth mode form on top of a flat wetting layer (WL) whose thickness is fixed. The inability to tune WL thickness has inhibited researchers’ attempts to fully control QD-WL interactions in these hybrid 0D-2D quantum systems. In contrast, using microscopy, spectroscopy, and computational modeling, we ...


Effect Of Surface Roughness On Ultrasonic Inspection Of Electron Beam Melting Ti‐6al‐4v, Evan T. Hanks, Anthony N. Palazotto, David Liu 2019 Air Force Institute of Technology

Effect Of Surface Roughness On Ultrasonic Inspection Of Electron Beam Melting Ti‐6al‐4v, Evan T. Hanks, Anthony N. Palazotto, David Liu

Faculty Publications

Experimental research was conducted on the effects of surface roughness on ultrasonic non-destructive testing of electron beam melted (EBM) additively manufactured Ti-6Al-4V. Additive manufacturing (AM) is a developing technology with many potential benefits, but certain challenges posed by its use require further research before AM parts are viable for widespread use in the aviation industry. Possible applications of this new technology include aircraft battle damage repair (ABDR), small batch manufacturing to fill supply gaps and replacement for obsolete parts. This paper aims to assess the effectiveness of ultrasonic inspection in detecting manufactured flaws in EBM-manufactured Ti-6Al-4V. Additively manufactured EBM products ...


Standardized Waterproof Testing Of Plastic Based Material Flooring (Pbm Flooring), John P. Sanders, Cody Spence 2019 Clemson University

Standardized Waterproof Testing Of Plastic Based Material Flooring (Pbm Flooring), John P. Sanders, Cody Spence

Publications

Tile Council of North America Product Performance Testing Laboratory, under the direction of Dr. John Sanders of the Bishop Materials Laboratory at Clemson University, evaluated the extent that water can leak through plastic based material (PBM)1 floor coverings advertised as 100% waterproof. To make this assessment, product literature was examined to determine which test methods were used to support the manufacturers’2 claims of products being waterproof. Neither test methods or data to justify a 100% waterproof claim were found, despite a thorough review of product literature.3

ASTM, ANSI, ISO, and CEN standards were examined for relevant test ...


Wet Slip Resistance Of Plastic Based Material Flooring (Pbm Flooring), John P. Sanders, Grant Davidson 2019 Clemson University

Wet Slip Resistance Of Plastic Based Material Flooring (Pbm Flooring), John P. Sanders, Grant Davidson

Publications

Tile Council of North America Product Performance Testing Laboratory, under the direction of Dr. John Sanders of the Bishop Materials Laboratory at Clemson University, measured the wet Dynamic Coefficient of Friction (DCOF) of 22 plastic based material (PBM1) flooring products that manufacturers2 advertise or claim to be waterproof, water resistant, or depict being used in areas where flooring gets wet.3 The claims suggest that such PBM products can be used where exposed to water. However, product literature for only five products tested in this report cautioned the products can be potentially slippery when wet, and no measurements ...


Comparison Study Of Mold Growth Resistance Of Plastic Based Material Flooring (Pbm Flooring) And Ceramic Tile Flooring, Jyothi Rangineni, Jeremy Tzeng 2019 Tile Council of North America

Comparison Study Of Mold Growth Resistance Of Plastic Based Material Flooring (Pbm Flooring) And Ceramic Tile Flooring, Jyothi Rangineni, Jeremy Tzeng

Publications

Clemson University Department of Biological Sciences and Tile Council of North America Product Performance Testing Laboratory evaluated whether ceramic tile and Plastic Based Material (PBM1) flooring support mold growth when exposed to fungal spores.

Mold grows in moisture-rich environments and requires only minimal sources of nutrition to support growth. It has long been identified to cause damage to buildings and construction materials and its presence in buildings has been connected to many major health concerns with various studies and reviews published on this matter.2

The method used to evaluate mold growth was ASTM G21-96 (2015).3 This test ...


Microstructure Evolution During Near-Tg Annealing And Its Effect On Shear Banding In Model Alloys, Meng-Hao Yang, Bei Cai, Yang Sun, Feng Zhang, Yi-Fan Wang, Cai-Zhuang Wang, Kai-Ming Ho 2019 Iowa State University and Ames Laboratory

Microstructure Evolution During Near-Tg Annealing And Its Effect On Shear Banding In Model Alloys, Meng-Hao Yang, Bei Cai, Yang Sun, Feng Zhang, Yi-Fan Wang, Cai-Zhuang Wang, Kai-Ming Ho

Ames Laboratory Accepted Manuscripts

By performing extensive molecular dynamics simulations, we investigate the deformation behavior in Al90Sm10 and Cu64.5Zr35.5 alloys after elongated isothermal annealing in the vicinity of the glass-transition temperature (Tg). Different microstructural response to the annealing process was observed: Al90Sm10 maintains the glassy structure with improved energetic stability, enhanced short-range order (SRO), and a more pronounced spatial network that extends beyond the first atomic shell, while Cu64.5Zr35.5 forms nanocrystalline Laves Cu2Zr phases. Shear banding occurs in both annealed systems under shear loading. For Al90Sm10, the spatial network formed by the local clusters characterizing the SRO of the system ...


Nanoscale Optical And Correlative Microscopies For Quantitative Characterization Of Dna Nanostructures, Christopher Michael Green 2019 Boise State University

Nanoscale Optical And Correlative Microscopies For Quantitative Characterization Of Dna Nanostructures, Christopher Michael Green

Boise State University Theses and Dissertations

Methods to engineer nanomaterials and devices with uniquely tailored properties are highly sought after in fields such as manufacturing, medicine, energy, and the environment. The macromolecule deoxyribonucleic acid (DNA) enables programmable self-assembly of nanostructures with near arbitrary shape and size and with unprecedented precision and accuracy. Additionally, DNA can be chemically modified to attach molecules and nanoparticles, providing a means to organize active materials into devices with unique or enhanced properties. One particularly powerful form of DNA-based self-assembly, DNA origami, provides robust structures with the potential for nanometer-scale resolution of addressable sites. DNA origami are assembled from one large DNA ...


Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen 2019 Missouri University of Science and Technology

Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The original version of this Article contained an error in Fig. 4. The x-axis labels in Fig. 4a, b were incorrectly labelled 'Diameter (mm)', rather than the correct 'Diameter (µm)'. This has been corrected in both the PDF and HTML versions of the Article.


Bioresorbable Composite Stents For Enhanced Response Of Vascular Smooth Muscle Cells, Hozhabr Mozafari 2019 University of Nebraska-Lincoln

Bioresorbable Composite Stents For Enhanced Response Of Vascular Smooth Muscle Cells, Hozhabr Mozafari

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Formation of arterial plaque and stenosis is one of the main cardiovascular disease risk factors. Stenting is a popular approach to increase the inner diameter of the artery and provide an acceptable lumen gain. This is achieved by applying internal pressure to the arterial wall. Despite the desirable outcomes of this procedure, there are complexities and challenges that are being discussed among scholars in this area. Restenosis is one of these complications, in which smooth muscles cell start proliferation and remodeling in response of induced mechanical stresses. Another important issue is the placement of the stent and possible migration due ...


Machine Learning Predictions Electronic Couplings For Charge Transport Calculations Of P3ht, Evan D. Miller, Matthew L. Jones, Mike M. Henry, Bryan Stanfill, Eric Jankowski 2019 Boise State University

Machine Learning Predictions Electronic Couplings For Charge Transport Calculations Of P3ht, Evan D. Miller, Matthew L. Jones, Mike M. Henry, Bryan Stanfill, Eric Jankowski

Materials Science and Engineering Faculty Publications and Presentations

The purpose of this work is to lower the computational cost of predicting charge mobilities in organic semiconductors, which will benefit the screening of candidates for inexpensive solar power generation. We characterize efforts to minimize the number of expensive quantum chemical calculations we perform by training machines to predict electronic couplings between monomers of poly-(3-hexylthiophene). We test five machine learning techniques and identify random forests as the most accurate, information-dense, and easy-to-implement approach for this problem, achieving mean-absolute-error of 0.02 [× 1.6 × 10−19 J], R2 = 0.986, predicting electronic couplings 390 times faster than quantum chemical ...


Characterization Of Zirconium Oxides Part I: Raman Mapping And Spectral Feature Analysis, Corey M. Efaw, Jordan L. Vandegrift, Michael Reynolds, Samuel McMurdie, Brian J. Jaques, Hui Xiong, Michael F. Hurley 2019 Boise State University

Characterization Of Zirconium Oxides Part I: Raman Mapping And Spectral Feature Analysis, Corey M. Efaw, Jordan L. Vandegrift, Michael Reynolds, Samuel Mcmurdie, Brian J. Jaques, Hui Xiong, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Raman mapping of sectioned zirconium cladding oxides was performed to analyze different spectral features before and after breakaway, as well as between zirconium and its alloys Zr-2.65Nb, Zry-3, and Zry-4. Oxide phase composition, or percent tetragonality, was defined to compare tetragonal to monoclinic zirconia. Percent tetragonality was spatially mapped to support distinction of zirconia phase distribution. A tetragonal-rich layer was seen at the metal/oxide interface, while post-breakaway samples exhibited increased amount of tetragonal phase in the bulk of their oxides. Spatial mapping of spectral peak location and half-width at half-maximum was accomplished to distinguish differences in stability mechanisms ...


Oxidation Behavior Of Welded Zry-3, Zry-4, And Zr–1nb Tubes, Jordan Vandegrift, Clemente J. Parga, Ben Coryell, Darryl P. Butt, Brian J. Jaques 2019 Boise State University

Oxidation Behavior Of Welded Zry-3, Zry-4, And Zr–1nb Tubes, Jordan Vandegrift, Clemente J. Parga, Ben Coryell, Darryl P. Butt, Brian J. Jaques

Materials Science and Engineering Faculty Publications and Presentations

The Transient Reactor Test (TREAT) facility is a research reactor designed to simulate rapid transients to test new fuel designs. TREAT's cladding is exposed to unique conditions compared to normal water reactors. These conditions include: exposure to air at high temperatures (≥600 °C), rapid heating (≈700 °C/s), and cladding geometry that includes chamfers and welds. This work investigates the effects of chamfering and welding on the oxidation behavior of zirconium alloys (Zircaloy-3, Zircaloy-4, and Zr–1Nb). Tube specimens were examined under isothermal and transient conditions in dry and humid air. The effect of weld type (tungsten inert gas ...


Digital Commons powered by bepress