Open Access. Powered by Scholars. Published by Universities.®

Biology and Biomimetic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

252 Full-Text Articles 538 Authors 45,921 Downloads 46 Institutions

All Articles in Biology and Biomimetic Materials

Faceted Search

252 full-text articles. Page 1 of 12.

Synthesis And Characterization Of Rapidly-Degrading Polyanhydrides As Vaccine Adjuvants, Sean M. Kelly, Akash Mitra, Srishti Mathur, Balaji Narasimhan 2019 Iowa State University

Synthesis And Characterization Of Rapidly-Degrading Polyanhydrides As Vaccine Adjuvants, Sean M. Kelly, Akash Mitra, Srishti Mathur, Balaji Narasimhan

Chemical and Biological Engineering Publications

There is a currently a need to develop adjuvants that are best suited to simultaneously enhance immune responses, induce immunologic memory, improve patient compliance (i.e., reduce doses and inflammation), and provide vaccine shelf stability for stockpiling and global deployment to challenging environments. Biodegradable polyanhydrides have been investigated extensively to overcome such challenges. It has been shown that controlling copolymer composition can result in chemistry-dependent immunomodulatory capabilities. These studies have revealed that copolymers rich in sebacic acid (SA) are highly internalized by antigen presenting cells and confer improved shelf stability of encapsulated proteins, while copolymers rich in 1,8-bis(p-carboxyphenoxy ...


Cdse Quantum Dots Synthesis Laboratory Course For High School Students, Danlin Zuo, Gyuseok Kim, David Jones 2019 Singh Center for Nanotechnology

Cdse Quantum Dots Synthesis Laboratory Course For High School Students, Danlin Zuo, Gyuseok Kim, David Jones

Protocols and Reports

Cadmium selenide quantum dot is a fascinating subject for leading high school students to the quantum world. An 8-hour laboratory course for up to 12 high school students is proposed. The 8-hour course consist of two 4-hours sections. This laboratory course includes the quantum dot syntheses, absorption and emission characterization, and data analysis. The proposes process runs at relatively lower temperature which means safe and easy, and shows apparent experimental results.


Investigation Of Cavitation-Induced Damage On Pdms Films, Alex H. Wrede, Faisal Al-Masri, Reza Montazami, Nicole N. Hashemi 2019 Iowa State University

Investigation Of Cavitation-Induced Damage On Pdms Films, Alex H. Wrede, Faisal Al-Masri, Reza Montazami, Nicole N. Hashemi

Mechanical Engineering Publications

Traumatic brain injuries (TBIs) are complex phenomena that create epidemic healthcare and financial concerns. Recent studies have theorized that cavitation exists during a TBI and has potential to induce significant damage to the surrounding anatomy. This study seeks to implement polydimethylsiloxane (PDMS) films as a placeholder of the brain to elucidate the damage that the surrounding brain tissue would experience from nearby cavitation. The apparatus includes an existing methodology that implements controlled cavitation. 3D confocal microscopy and interferometry techniques are used to characterize the surface damage to the PDMS films. Visual representation and roughness parameters on the nanoscale help elucidate ...


Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma 2019 The University of Western Ontario

Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma

Electronic Thesis and Dissertation Repository

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote regeneration and restore mechanical function to the intervertebral disc. This study developed composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A minimal protocol was developed to decellularize bovine NP that reduced nuclear content while preserving key extracellular matrix components predicted to be favourable for bioactivity. The resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an NP-like phenotype. These studies ...


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu 2019 Southern Methodist University

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal 2019 Louisiana State University

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Publications

Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured in wet-dry cycles to determine their feasibility in Region 6. The results showed that the specimen groups with ...


Fabrication Of High-Resolution Graphene-Based Flexible Electronics Via Polymer Casting, Metin Uz, Kyle Jackson, Maxsam S. Donta, Juhyung Jung, Matthew T. Lentner, John A. Hondred, Jonathan C. Claussen, Surya K. Mallapragada 2019 Iowa State University

Fabrication Of High-Resolution Graphene-Based Flexible Electronics Via Polymer Casting, Metin Uz, Kyle Jackson, Maxsam S. Donta, Juhyung Jung, Matthew T. Lentner, John A. Hondred, Jonathan C. Claussen, Surya K. Mallapragada

Chemical and Biological Engineering Publications

In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the ...


Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri 2019 Iowa State University

Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri

Dan Nettleton

After being the standard plant propagation protocol for decades, cultures of Arabidopsis thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity (as in co-cultures with microorganisms). Regardless of concerns over the aeration of these cultures, no investigation has explored the CO2 transport inside these cultures and its effect on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in thousands of older papers in the literature constitute a treatment, and whether this treatment could potentially affect the study of other treatments.For the first time we report the CO2concentrations in Parafilm-sealed cultures ...


Dropwise Condensation On Multi-Scale Bioinspired Metallic Surfaces With Nano-Features, Daniel Orejon, Alexandros Askounis, Yasuyuki Takata, Daniel Attinger 2019 The University of Edinburgh and Kyushu University

Dropwise Condensation On Multi-Scale Bioinspired Metallic Surfaces With Nano-Features, Daniel Orejon, Alexandros Askounis, Yasuyuki Takata, Daniel Attinger

Mechanical Engineering Publications

Non-wetting surfaces engineered from intrinsically hydrophilic metallic materials are promising for self-cleaning, anti-icing and/or condensation heat transfer applications where the durability of the coating is an issue. In this work, we fabricate and study the wetting behaviour and the condensation performance on two metallic non-wetting surfaces with varying number and size of the roughness tiers without further hydrophobic coating procedure. On one hand, the surface resembling a rose petal exhibits a sticky non-wetting behaviour as drops wet the microscopic roughness features with the consequent enhanced drop adhesion, which leads to filmwise condensation. On the other hand, the surface resembling ...


Self-Healing Materials For Soft-Matter Machines And Electronics, Michael D. Bartlett, Michael D. Dickey, Carmel Majidi 2019 Iowa State University

Self-Healing Materials For Soft-Matter Machines And Electronics, Michael D. Bartlett, Michael D. Dickey, Carmel Majidi

Michael Bartlett

The emergence of soft machines and electronics creates new opportunities to engineer robotic systems that are mechanically compliant, deformable, and safe for physical interaction with the human body. Progress, however, depends on new classes of soft multifunctional materials that can operate outside of a hard exterior and withstand the same real-world conditions that human skin and other soft biological materials are typically subjected to. As with their natural counterparts, these materials must be capable of self-repair and healing when damaged to maintain the longevity of the host system and prevent sudden or permanent failure. Here, we provide a perspective on ...


Self-Healing Materials For Soft-Matter Machines And Electronics, Michael D. Bartlett, Michael D. Dickey, Carmel Majidi 2019 Iowa State University

Self-Healing Materials For Soft-Matter Machines And Electronics, Michael D. Bartlett, Michael D. Dickey, Carmel Majidi

Materials Science and Engineering Publications

The emergence of soft machines and electronics creates new opportunities to engineer robotic systems that are mechanically compliant, deformable, and safe for physical interaction with the human body. Progress, however, depends on new classes of soft multifunctional materials that can operate outside of a hard exterior and withstand the same real-world conditions that human skin and other soft biological materials are typically subjected to. As with their natural counterparts, these materials must be capable of self-repair and healing when damaged to maintain the longevity of the host system and prevent sudden or permanent failure. Here, we provide a perspective on ...


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad 2019 The University of Western Ontario

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing ...


Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate 2019 California Polytechnic State University, San Luis Obispo

Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate

Biomedical Engineering

The objective is to produce an electrophysiological model of an adult human left atrium. This model will be used to test mapping probe catheters used for locating cardiac arrhythmias against current technology used in practice. Dr. Chris Porterfield requested this model and other physicians or probe catheter manufacturers may also use this product in the future. Dr. Porterfield also discussed the possibility of future senior project groups using the model as a bench test for designing new catheter tips. The model will precisely simulate electrical behaviors of the heart in normal as well as arrhythmic conditions. Ideally, the model will ...


Soft-Matter Damage Detection Systems For Electronics And Structures, Michael D. Bartlett, Eric J. Markvicka, Ravi Tutika, Carmel Majidi 2019 Iowa State University

Soft-Matter Damage Detection Systems For Electronics And Structures, Michael D. Bartlett, Eric J. Markvicka, Ravi Tutika, Carmel Majidi

Materials Science and Engineering Publications

Soft-matter technologies are essential for emerging applications in wearable computing, human-machine interaction, and soft robotics. However, as these technologies gain adoption in society and interact with unstructured environments, material and structure damage becomes inevitable. Here, we present a robotic material that mimics soft tissues found in biological systems to identify, compute, and respond to damage. This system is composed of liquid metal droplets dispersed in soft elastomers that rupture when damaged, creating electrically conductive pathways that are identified with a soft active-matrix grid. This presents new opportunities to autonomously identify damage, calculate severity, and respond to prevent failure within robotic ...


The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez 2019 University of New Mexico - Main Campus

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these ...


Evaluation Of Guar Gum As A Novel Adsorbent, Philicia Geiser 2019 Air Force Institute of Technology

Evaluation Of Guar Gum As A Novel Adsorbent, Philicia Geiser

Theses and Dissertations

Guar gum (GG) is a promising product increasingly used in a variety of industries. It is nontoxic, inexpensive, and biodegradable. This research evaluated novel approaches using GG as an adsorbent for aromatic organic water contaminants. The application of GG demonstrated some effectiveness against all contaminants tested. Two brands of GG were tested using 5 different GG treatment strategies. Various experiments demonstrated nearly complete removal of Allura Red dye, Brilliant Blue dye, Erythrosine B dye, Methylene Blue dye, Tartrazine dye, and 2,4-dinitrotoluene; additionally, 78% adsorption was observed for Fast Green dye. GG typically removed less than 10% of toluene, which ...


Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang 2019 University of Massachusetts Amherst

Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang

Doctoral Dissertations

Proteins have intrinsic molecular properties that are highly useful for materials applications, especially for biomaterials. My research has focused on translating these molecular properties to materials surface behavior. In one approach, I developed a fluorous-based thermal treatment strategy to generate stable thin films from a variety of naturally abundant proteins. The different surface properties generated from the choice of protein were utilized to modulate cell-surface interactions, prevent bacterial adhesions, and control drug loading/release. I have used nanoimprint lithography to generate patterned protein films for cell alignment. Coupling with inkjet printing deposition, I have fabricated mixed protein films with spatial ...


Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar 2019 University of Massachusetts Amherst

Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar

Doctoral Dissertations

There are three major challenges for the design of patterned surfaces for biointerfacial applications: (i) durability of antibacterial/antifouling mechanisms, (ii) mechanical durability, and (iii) lifetime of the master mold for mass production of patterned surfaces. In this dissertation, we describe our contribution for the development of each of these challenges.

The bioinspired surface, Sharklet AFTM, has been shown to reduce bacterial attachment via a biocide-free structure-property relationship effectively. Unfortunately, the effectiveness of polymer-based sharkskin surfaces is challenged over the long term by both eventual bacteria accumulation and a lack of mechanical durability. To address these common modes of ...


Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri 2019 Iowa State University

Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri

Statistics Publications

After being the standard plant propagation protocol for decades, cultures of Arabidopsis thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity (as in co-cultures with microorganisms). Regardless of concerns over the aeration of these cultures, no investigation has explored the CO2 transport inside these cultures and its effect on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in thousands of older papers in the literature constitute a treatment, and whether this treatment could potentially affect the study of other treatments.For the first time we report the CO2concentrations in Parafilm-sealed cultures ...


Degradation And Remodeling Of Epitaxially Grown Collagen Fibrils, Juan Wang, Anuraag Boddupalli, Joseph Koelbl, Dong Hyun Nam, Xin Ge, Kaitlin M. Bratlie, Ian C. Schneider 2019 Iowa State University

Degradation And Remodeling Of Epitaxially Grown Collagen Fibrils, Juan Wang, Anuraag Boddupalli, Joseph Koelbl, Dong Hyun Nam, Xin Ge, Kaitlin M. Bratlie, Ian C. Schneider

Materials Science and Engineering Publications

Introduction: The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance.

Methods: Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by ...


Digital Commons powered by bepress