Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

975 Full-Text Articles 1,556 Authors 513,917 Downloads 83 Institutions

All Articles in Electronic Devices and Semiconductor Manufacturing

Faceted Search

975 full-text articles. Page 33 of 42.

Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chnegjie Zuo, Gianluca Piazza 2013 University of Pennsylvania

Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chnegjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the demonstration of a new class of ultra-thin (250 nm thick) super high frequency (SHF) AlN piezoelectric two-port resonators and filters. A thickness field excitation scheme was employed to excite a higher order contour extensional mode of vibration in an AlN nano plate (250 nm thick) above 3 GHz and synthesize a 1.96 GHz narrow-bandwidth channel-select filter. The devices of this work are able to operate over a frequency range from 1.9 to 3.5 GHz and are employed to synthesize the highest frequency MEMS filter based on electrically self-coupled AlN contour-mode resonators. Very narrow bandwidth (~ …


5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza 2013 University of Pennsylvania

5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of Super High Frequency (SHF) laterally vibrating NanoElctroMechanical (NEMS) resonators. For the first time, AlN piezoelectric nanoresonators with multiple frequencies of operation ranging between 5 and 10 GHz have been fabricated on the same chip and attained the highest f-Q product (4.6E12 Hz) ever reported in AlN contour-mode devices. These piezoelectric NEMS resonators are the first of their class to demonstrate on-chip sensing and actuation of nanostructures without the need of cumbersome or power consuming excitation and readout systems. Effective piezoelectric activity has been demonstrated in thin AlN films having vertical …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza 2013 University of Pennsylvania

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Super-High-Frequency Two-Port Aln Contour-Mode Resonators For Rf Applications, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza 2013 University of Pennsylvania

Super-High-Frequency Two-Port Aln Contour-Mode Resonators For Rf Applications, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of thin-film (250 nm) superhigh- frequency laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions to excite a contourextensional mode of vibration in nanofeatures of an ultra-thin (250 nm) AlN film. In this first demonstration, 2-port resonators vibrating up to 4.5 GHz have been fabricated on the same die and attained electromechanical coupling, kt^2, in excess of 1.5%. These devices are employed to …


Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen 2013 University of Pennsylvania

Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen

Albert B Chen

Dielectric thin films in nanodevices may absorb moisture, leading to physical changes and property/performance degradation, such as altered data storage and readout in resistance random access memory. Here we demonstrate using a nanometallic memory that such degradation proceeds via nanoporosity, which facilitates water wetting in otherwise nonwetting dielectrics. Electric degradation only occurs when the device is in the charge-storage state, which provides a nanoscale dielectrophoretic force directing H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged hydroxyl formation. While these processes are dramatically enhanced by an external DC or AC field and electron-donating electrodes, …


Battery Energy Storage System In Solar Power Generation, RADHEY SHYAM MEENA Er. 2013 Rajasthan Technical University Kota

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er.

Radhey Shyam Meena

As solar photovoltaic power generation becomes more commonplace, the inherent intermittency of the solar resource poses one of the great challenges to those who would design and implement the next generation smart grid. Specifically, grid-tied solar power generation is a distributed resource whose output can change extremely rapidly, resulting in many issues for the distribution system operator with a large quantity of installed photovoltaic devices. Battery energy storage systems are increasingly being used to help integrate solar power into the grid. These systems are capable of absorbing and delivering both real and reactive power with sub-second response times. With these …


A 40 Ghz Power Amplifier Using A Low Cost High Volume 0.15 Um Optical Lithography Phemt Process, Kenneth W. Mays 2013 Portland State University

A 40 Ghz Power Amplifier Using A Low Cost High Volume 0.15 Um Optical Lithography Phemt Process, Kenneth W. Mays

Dissertations and Theses

The demand for higher frequency applications is largely driven by bandwidth. The evolution of circuits in the microwave and millimeter frequency ranges always demands higher performance and lower cost as the technology and specification requirements evolve. Thus the development of new processes addressing higher frequencies and bandwidth requirements is essential to the growth of any semiconductor company participating in these markets. There exist processes which can perform in the higher frequency design space from a technical perspective. However, a cost effective solution must complement the technical merits for deployment. Thus a new 0.15 um optical lithography pHEMT process was developed …


A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam 2013 University of Massachusetts Amherst

A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam

Masters Theses 1911 - February 2014

Quantum-Dot Cellular Automata (QCA) is currently being investigated as an alternative to CMOS technology. There has been extensive study on a wide range of circuits from simple logical circuits such as adders to complex circuits such as 4-bit processors. At the same time, little if any work has been done in considering the possibility of reconfiguration to reduce power in QCA devices. This work presents one of the first such efforts when considering reconfigurable QCA architectures which are expected to be both robust and power efficient. We present a new reconfiguration scheme which is highly robust and is expected to …


Sige Millimeter-Wave (W-Band) Down-Converter For Phased Focal Plane Array, Maruthi Nagavalli Yogeesh 2013 University of Massachusetts Amherst

Sige Millimeter-Wave (W-Band) Down-Converter For Phased Focal Plane Array, Maruthi Nagavalli Yogeesh

Masters Theses 1911 - February 2014

A millimeter-wave (W-Band) down-converter for Phased Focal Plane Arrays (PFPAs) has been designed and fabricated using the IBM Silicon-Germanium (SiGe) BiCMOS 8HP process technology. The radio frequency (RF) input range of the down-converter chip is from 70 95GHz. The intermediate frequency (IF) range is from 5 30GHz. The local oscillator (LO) frequency is fixed at 65GHz. The down-converter chip has been designed to achieve a conversion gain greater than 20dB, a noise figure (NF) below 10dB and input return loss greater than 10dB. The chip also has novel LO circuitry facilitating LO feed-through among down-converters chips in parallel. This wide …


Extending Device Performance In Photonic Devices Using Piezoelectric Properties, Gregory Edward Triplett 2013 Virginia Commonwealth University

Extending Device Performance In Photonic Devices Using Piezoelectric Properties, Gregory Edward Triplett

Electrical and Computer Engineering Publications

This study focuses on the influence of epi-layer strain and piezoelectric effects in asymmetric GaInAs/GaAlAs action regions that potentially lead to intra-cavity frequency mixing. The theoretical limits for conduction and valence band offsets in lattice-matched semiconductor structures have resulted in the deployment of non-traditional approaches such as strain compensation to extend wavelength in intersubband devices, where strain limits are related to misfit dislocation generation. Strain and piezoelectric effects have been studied and verified using select photonic device designs. Metrics under this effort also included dipole strength, oscillator strength, and offset of energy transitions, which are strongly correlated with induced piezoelectric …


Pseudomorphic Growth Of Inas On Misoriented Gaas For Extending Quantum Cascade Laser Wavelength, Gregory Edward Triplett, Charles Meyer, Emily Cheng, Justin Grayer, David Mueller, Denzil Roberts, Samuel Graham 2013 Virginia Commonwealth University

Pseudomorphic Growth Of Inas On Misoriented Gaas For Extending Quantum Cascade Laser Wavelength, Gregory Edward Triplett, Charles Meyer, Emily Cheng, Justin Grayer, David Mueller, Denzil Roberts, Samuel Graham

Electrical and Computer Engineering Publications

The authors have studied the impact of epilayer strain on the deposition of InAs/GaAs on (100) and (111)B with 2 degrees offset toward 2-1-1 surfaces. Consequences of a 7% lattice mismatch between these orientations in the form of three-dimensional growth are less apparent for (111)B with 2 degrees offset toward 2-1-1 surfaces compared to (100). By exploring a range of molecular beam epitaxy process parameters for InAs/GaAs growth and utilizing scanning electron microscopy, atomic force microscopy, and Raman spectroscopy to evaluate the quality of these strained layers, the authors develop empirical models that describe the influence of the process conditions …


Multi-Mode Self-Referencing Surface Plasmon Resonance Sensors, Jing Guo 2013 University of Kentucky

Multi-Mode Self-Referencing Surface Plasmon Resonance Sensors, Jing Guo

Theses and Dissertations--Electrical and Computer Engineering

Surface-plasmon-resonance (SPR) sensors are widely used in biological, chemical, medical, and environmental sensing. This dissertation describes the design and development of dual-mode, self-referencing SPR sensors supporting two surface-plasmon modes (long- and short-range) which can differentiate surface binding interactions from bulk index changes at a single sensing location. Dual-mode SPR sensors have been optimized for surface limit of detection (LOD). In a wavelength interrogated optical setup, both surface plasmons are simultaneously excited at the same location and incident angle but at different wavelengths. To improve the sensor performance, a new approach to dual-mode SPR sensing is presented that offers improved differentiation …


Materials Selection And Processing Techniques For Small Spacecraft Solar Cell Arrays, Naseem M. Torabi 2013 University of Kentucky

Materials Selection And Processing Techniques For Small Spacecraft Solar Cell Arrays, Naseem M. Torabi

Theses and Dissertations--Electrical and Computer Engineering

Body mounted germanium substrate solar cell arrays form the faces of many small satellite designs to provide the primary power source on orbit. High efficiency solar cells are made affordable for university satellite programs as triangular devices trimmed from wafer scale solar cells. The smaller cells allow array designs to pack tightly around antenna mounts and payload instruments, giving the board design flexibility. One objective of this work is to investigate the reliability of solar cells attached to FR-4 printed circuit boards. FR-4 circuit boards have significantly higher thermal expansion coefficients and lower thermal conductivities than germanium. This thermal expansion …


Investigation Of Cds Nanowires And Planar Films For Enhanced Performance As Window Layers In Cds-Cdte Solar Cell Devices, Jianhao Chen 2013 University of Kentucky

Investigation Of Cds Nanowires And Planar Films For Enhanced Performance As Window Layers In Cds-Cdte Solar Cell Devices, Jianhao Chen

Theses and Dissertations--Electrical and Computer Engineering

Cadmium sulfide (CdS) and cadmium telluride (CdTe) are two leading semiconductor materials used in the fabrication of thin film solar cells of relatively high power conversion efficiency and low manufacturing cost. In this work, CdS/CdTe solar cells with a varying set of processing parameters and device designs were fabricated and characterized for comparative evaluation. Studies were undertaken to elucidate the effects of (i) each step in fabrication and (ii) parameters like thickness, sheet resistance, light absorptivity solution concentration, inert gas pressure etc. Best results were obtained when the thickness of CdS planar film for the window layer was in the …


Wireless Sensor Networks And The Internet Of Things, Yingtao Jiang, Lei Zhang, Ling Wang 2013 University of Nevada, Las Vegas

Wireless Sensor Networks And The Internet Of Things, Yingtao Jiang, Lei Zhang, Ling Wang

Electrical & Computer Engineering Faculty Research

It is estimated that mobile internet devices that can act as sensors will outnumber humans this year (2013), and by 2015, there will be about 15 billion internet-connected devices. Related applications are thriving in commercial, civic, and scientific operations that involve sensors, web, and services, leading by both academic societies and industry companies. It is commonly accepted that the next generation of internet is becoming the “Internet of Things (IoT)” which is a worldwide network of interconnected objects and their virtual representations uniquely addressable based on standard communication protocols. Identified by a unique address, any object including computers, mobile phones, …


Estimation Of Performance Indices For The Planning Of Sustainable Transportation Systems, Alexander Paz, Pankaj Maheshwari 2013 University of Nevada, Las Vegas

Estimation Of Performance Indices For The Planning Of Sustainable Transportation Systems, Alexander Paz, Pankaj Maheshwari

Electrical & Computer Engineering Faculty Research

In the context of sustainable transportation systems, previous studies have either focused only on the transportation systemor have not used a methodology that enables the treatment of incomplete, vague, and qualitative information associated with the available data. This study proposes a system of systems (SOS) and a fuzzy logic modeling approach. The SOS includes the Transportation, Activity, and Environment systems. The fuzzy logic modeling approach enables the treatment of the vagueness associated with some of the relevant data. Performance Indices (PIs) are computed for each system using a number of performance measures. The PIs illustrate the aggregated performance of each …


Study Of N Incorporation In Insb On Gaas By Molecular Beam Epitaxy For Long Wavelength Infrared Devices, Nimai Chand Patra 2013 North Carolina Agricultural and Technical State University

Study Of N Incorporation In Insb On Gaas By Molecular Beam Epitaxy For Long Wavelength Infrared Devices, Nimai Chand Patra

Dissertations

The distinguishing features of dilute nitride III-V semiconductors lie in the large simultaneous reduction in the band gap and lattice parameter when N is incorporated in small amounts in an otherwise wide band gap III-V material. In particular, N incorporation in InSb is attracting great attention due to its potential applications in the long wavelength infrared (LWIR) applications. However, the relatively small atomic size of N with respect to Sb makes the growth of good quality InSbN layers challenging with effective N incorporation. In this dissertation we present a correlation of the molecular beam epitaxial growth parameters on the type …


Copper Indium Diselenide Nanowire Arrays In Alumina Membranes Deposited On Molybdenum And Other Back Contact Substrates, Bhavananda R. Nadimpally 2013 University of Kentucky

Copper Indium Diselenide Nanowire Arrays In Alumina Membranes Deposited On Molybdenum And Other Back Contact Substrates, Bhavananda R. Nadimpally

Theses and Dissertations--Electrical and Computer Engineering

Heterojunctions of CuInSe2 (CIS) nanowires with cadmium sulfide (CdS) were fabricated demonstrating for the first time, vertically aligned nanowires of CIS in the conventional Mo/CIS/CdS stack. These devices were studied for their material and electrical characteristics to provide a better understanding of the transport phenomena governing the operation of heterojunctions involving CIS nanowires. Removal of several key bottlenecks was crucial in achieving this. For example, it was found that to fabricate alumina membranes on molybdenum substrates, a thin interlayer of tungsten had to be inserted. A qualitative model was proposed to explain the difficulty in fabricating anodized aluminum oxide …


Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen 2012 University of Pennsylvania

Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen

Albert B Chen

Although intermediates resistance states are common in resistance random access memory (RRAM), two-way switching among them has not been demonstrated. Using a nanometallic bipolar RRAM, we have illustrated a general scheme for writing/rewriting multi-bit memory using voltage pulses. Stability conditions for accessing intermediate states have also been determined in terms of a state distribution function and the weight of serial load resistance. A multi-bit memory is shown to realize considerable space saving at a modest decrease of switching speed.


Z-Source Inverter For Automotive Applications, Omar Ellabban, Joeri Van Mierlo 2012 Helwan University

Z-Source Inverter For Automotive Applications, Omar Ellabban, Joeri Van Mierlo

Omar Ellabban

No abstract provided.


Digital Commons powered by bepress