Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,449 Full-Text Articles 3,426 Authors 353,206 Downloads 69 Institutions

All Articles in Catalysis and Reaction Engineering

Faceted Search

1,449 full-text articles. Page 1 of 54.

A Comprehensive Review Of Fischer-Tropsch Synthesis Processes To Produce Sustainable Diesel And Aviation Fuel, Joseph C. Steinagel 2024 Georgia Southern University

A Comprehensive Review Of Fischer-Tropsch Synthesis Processes To Produce Sustainable Diesel And Aviation Fuel, Joseph C. Steinagel

Honors College Theses

The greatest threat known to humankind today is global warming. It affects every nation on the planet and the natural order of all living things. Consequently, this ongoing crisis necessitates action to scientifically revolutionize important areas of society, including researching modern adaptations of the transportation industry. In that regard, it has been determined that an effective short-term answer to eliminating carbon emissions is to produce sustainable fuels that run cooperatively with the well-established machines of today. Sustainable aviation fuel (SAF) is one such topic of interest, and the Fischer-Tropsch synthesis process is an effective way of producing SAF. To that …


Cfd Study On Two-Phase Flow Patterns In A Pipe With 90º Elbow In Different Operating Conditions, Hagar Alm-Eldin Bastawissi, Mohammed Ahmed Khafagy, E. A. El Shenawy Prof. Dr., Ahmed M. Salem Dr 2024 Faculty of Engineering, Tanta University

Cfd Study On Two-Phase Flow Patterns In A Pipe With 90º Elbow In Different Operating Conditions, Hagar Alm-Eldin Bastawissi, Mohammed Ahmed Khafagy, E. A. El Shenawy Prof. Dr., Ahmed M. Salem Dr

Journal of Engineering Research

Recently, CFD has offered a technological solution for modelling multi-phase flow in which we can make endless simulations with reduced expenses and effort in high accuracy results; we shall also mention that experimental studies have limitations for safety considerations when experimenting with flow in high temperature or pressure values or medium nature as in nuclear or chemical flows.In this paper, we used the ANSYS FLUENT CFD program to simulate the two-phase flow in a pipe to study the effect of attaching a 90-degree elbow fitting to the piping system, seeking to find out the change in the pattern and resulting …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin 2024 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


Biodiesel Transesterification Of Spent Coffee Grounds Using Dbu As A Catalyst: Using Dbu To Make Biodiesel From Coffee Grounds, Christopher Stepherson, Pericles Karras, Amy Ha, Phuc Tan Nguyen, Abigail Pati, Jacob Hejazi, Soheil Hussain, Elizabeth De Young, Shuaicheng Fu 2024 Purdue University

Biodiesel Transesterification Of Spent Coffee Grounds Using Dbu As A Catalyst: Using Dbu To Make Biodiesel From Coffee Grounds, Christopher Stepherson, Pericles Karras, Amy Ha, Phuc Tan Nguyen, Abigail Pati, Jacob Hejazi, Soheil Hussain, Elizabeth De Young, Shuaicheng Fu

The Journal of Purdue Undergraduate Research

Coffee is one of the most universally consumed beverages. The world produces 60 million tons of spent coffee grounds (SCGs) as waste per year. Biodiesel made from SCGs is an eco-friendly alternative fuel but proves difficult to produce. 1,8-Diazabicyclo[ 5.4.0]undec-7- ene (DBU) was used as both a solvent and a catalyst with methanol to determine the efficiency of biodiesel production from SCGs. The process was completed by extracting coffee oil from acid-washed spent coffee grounds (AWSCGs) using hexane. The two extraction methods that were explored were Soxhlet and agitation. DBU is an interesting choice as a solvent and a catalyst …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society of Electrochemistry 2024 Chinese Chemical Society | Xiamen University

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma 2024 Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang 2024 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


Modeling Of Amine-Based Co2 Capture Process, Zafar Safarovich Turakulov 2023 Tashkent Institute of chemical technology. Address: Navoi Street, 32, Tashkent, Uzbekistan, 100011. E-mail: webdastur@gmail.com, Phone: +998946366355.

Modeling Of Amine-Based Co2 Capture Process, Zafar Safarovich Turakulov

Chemical Technology, Control and Management

A significant factor influencing climate change is the release of carbon dioxide (CO2) into the atmosphere as a consequence of human activities such as the combustion of fossil fuels. Climate change can be slowed down by taking action to mitigate industrial-scale CO2 emissions. Currently, the most advanced technology for capturing CO2 from industrial flue gases is the post-combustion CO2 capture based on amine absorption. However, due to the high energy penalties of existing CO2 capture technologies and insufficient carbon markets, it is necessary to develop methods that compete with these technologies or minimize their …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr 2023 School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao 2023 State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Robust Gasification Trial Results For A Variety Of Difficult-To-Recycle Packaging-Related Materials, Bruce A. Welt 2023 University of Florida

Robust Gasification Trial Results For A Variety Of Difficult-To-Recycle Packaging-Related Materials, Bruce A. Welt

Journal of Applied Packaging Research

Currently, recycling requires nearly absolute sorting of materials to accommodate the limited capabilities of existing recycling infrastructure. Whether a material is “recyclable” depends more on the method of recycling than the material itself. Our dependence upon sorting has limited success of recycling and has stifled our ability to achieve circular economy sustainability with plastic packaging materials. Our dependence upon sorting is rooted in our material-specific recycling processes. However, newer robust recycling processes are commercially available that reduce or eliminate the need to sort waste, and can convert mixed waste into primary feedstock chemicals, such as methanol for subsequent manufacture of …


Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava 2023 Pittsburg State University

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda de Oliveira Nogueira 2023 University of Maine

The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira

Electronic Theses and Dissertations

Market trends show growing interest in cellulose nanomaterials due to their low environmental impact. However, current nanocellulose isolation technologies face technoeconomic and life cycle limitations. Previous research has shown that enzymatic treatments effectively reduce the energy input for mechanical nanocellulose isolation. Simultaneously, there is potential to improve the viability of cellulosic ethanol facilities by coproducing nanocelluloses as high-value product obtained from agricultural feedstock. Here, our goal was to study the mass balance of enzymatic-mechanical processes that coproduces cellulosic sugars and nanocelluloses, evaluating the technical feasibility of converting lignified and non-lignified materials.

First, we have determined a feasible 50:50 mass ratio …


Effect Of Temperature And Steam-To-Carbon Monoxide (Co) Ratio On Hydrogen Production In Water-Gas Shift Reaction Using Cu-Zno-Al2o3 Catalyst, Sekar Kumala Desi, Restu Siti Nursa'adah, Hana Nabila Anindita, Bambang Muharto, Nurdiah Rahmawati, Tyas Puspita Rini, Erlan Rosyadi 2023 Bioenergy and Alternative Energy Research Group, Conversion and Conservation Energy Research Center, National Research and Innovation Indonesia, Tangerang Selatan 15314, Indonesia

Effect Of Temperature And Steam-To-Carbon Monoxide (Co) Ratio On Hydrogen Production In Water-Gas Shift Reaction Using Cu-Zno-Al2o3 Catalyst, Sekar Kumala Desi, Restu Siti Nursa'adah, Hana Nabila Anindita, Bambang Muharto, Nurdiah Rahmawati, Tyas Puspita Rini, Erlan Rosyadi

Makara Journal of Science

This study investigates the effect of steam-to-CO molar ratio and temperature on hydrogen production in a water gas shift reaction using a Cu-ZnO-Al2O3 catalyst. Herein, different steam-to-CO molar ratios (1:1, 2:1, and 3:1) and temperatures (200 °C, 250 °C, and 300 °C) were applied to investigate their impact on the reaction and H2 production. The Cu-ZnO-Al2O3 catalyst was characterized by its surface area, pore size distribution, and chemical composition. Moreover, the experimental setup enabled the control of temperature and steam-to-CO molar ratio while monitoring the product gas composition. The results revealed a considerable …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio 2023 Clemson University

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Constructing Carbon-Encapsulated Nifev-Based Electrocatalysts By Alkoxide-Based Self-Template Method For Oxygen Evolution Reaction, En-Hui Ma, Xu-Po Liu, Tao Shen, De-Li Wang 2023 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Constructing Carbon-Encapsulated Nifev-Based Electrocatalysts By Alkoxide-Based Self-Template Method For Oxygen Evolution Reaction, En-Hui Ma, Xu-Po Liu, Tao Shen, De-Li Wang

Journal of Electrochemistry

The development of green and sustainable water-splitting hydrogen production technology is beneficial to reducing the over-reliance on fossil fuels and realizing the strategic goal of "carbon neutral". As one of the half reactions for water splitting, oxygen evolution reaction has suffered the problems of sluggish four-electron transfer process and relatively slow reaction kinetics. Therefore, exploring efficient and stable catalysts for oxygen evolution reaction is of critical importance for water-splitting technology. Metal alkoxides are a series of compounds formed by the coordination function of metal ions with alcohol molecules. Metal alkoxides possess the double advantages of organic materials and inorganic materials, …


Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang 2023 College of Energy, Xiamen University, Xiamen 361005, Fujian, China

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Preparation And Electrocatalytic Performance Of Feni-Cop/Nc Bifunctional Catalyst, Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen 2023 Coellece of Transportation Engineering, Dalian Maritime University, Dalian, Liaoning, 361005, China

Preparation And Electrocatalytic Performance Of Feni-Cop/Nc Bifunctional Catalyst, Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen

Journal of Electrochemistry

Rechargeable zinc-air batteries have gradually attracted much attention worldwide due to their high capacity, high energy density and low price. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) correspond to the charging and discharging processes in rechargeable zinc-air battery, respectively. At present, commercial Pt/C and IrO2 catalysts hinder the large-scale application of zinc-air batteries due to low reserves, high prices and poor stability. Therefore, exploring high performance, low cost and high stability with dual functional catalysts is important for the development of rechargeable zinc-Air batteries. The metal-organic frameworks (MOFs) have high specific surface area, structural stability, good catalytic …


Hydrophobicity Optimization Of Cathode Catalyst Layer For Proton Exchange Membrane Fuel Cell, Hao-Jie Chen, Mei-Hua Tang, Sheng-Li Chen 2023 Hubei Key Laboratory of Electrochemical Power Sources, Department of Chemistry, Wuhan University, Wuhan 430072, China

Hydrophobicity Optimization Of Cathode Catalyst Layer For Proton Exchange Membrane Fuel Cell, Hao-Jie Chen, Mei-Hua Tang, Sheng-Li Chen

Journal of Electrochemistry

Hydrophobicity of the cathode catalyst layers (CCLs) crucially determines the performance of proton exchange membrane fuel cells (PEMFCs) by affecting the transports of oxygen and liquid water. In this regard, polytetrafluoroethylene (PTFE) is usually used as a hydrophobic additive to facilitate the oxygen and water transports in CCLs. So far, there remains lacking systematic effort to optimize the addition methods of PTFE in CCLs and the mechanisms behind. In this work, the effects of the approaches for PTFE addition and the distribution of PTFE on the mass transport of oxygen and the proton conduction in CCLs were studied by using …


Synthesis And Evaluation Of Organic Additives For Copper Electroplating Of Interconnects, Yue-Hui Zhai, Yi-Xiao Peng, Yan Hong, Yuan-Ming Chen, Guo-Yun Zhou, Wei He, Peng-Ju Wang, Xian-Ming Chen, Chong Wang 2023 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

Synthesis And Evaluation Of Organic Additives For Copper Electroplating Of Interconnects, Yue-Hui Zhai, Yi-Xiao Peng, Yan Hong, Yuan-Ming Chen, Guo-Yun Zhou, Wei He, Peng-Ju Wang, Xian-Ming Chen, Chong Wang

Journal of Electrochemistry

Copper interconnects are essential to the functionality, performance, power efficiency, reliability, and fabrication yield of electronic devices. They are widely found in chips, packaging substrates and printed circuit boards, and are often produced by copper electroplating in an acidic aqueous solution. Organic additives play a decisive role in regulating copper deposition to fill microgrooves, and micro-vias to form fine lines and interlayer interconnects. Generally, an additive package consists of three components (brightener, suppressor, and leveler), which have a synergistic effect of super-filling on electroplating copper when the concentration ratio is appropriate. Many works of literature have discussed the mechanism of …


Digital Commons powered by bepress