Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,450 Full-Text Articles 3,426 Authors 417,824 Downloads 69 Institutions

All Articles in Catalysis and Reaction Engineering

Faceted Search

1,450 full-text articles. Page 3 of 54.

Highly Dispersed Pt Nanoparticles Root In Single-Atom Fe Sites In Ldhs Toward Efficient Methanol Oxidation, Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun 2023 State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;

Highly Dispersed Pt Nanoparticles Root In Single-Atom Fe Sites In Ldhs Toward Efficient Methanol Oxidation, Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun

Journal of Electrochemistry

Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell, which has already attracted growing popularities. However, current methanol oxidation electrocatalysts fall far short of expectations and suffer from excessive use of noble metal, mediocre activity, and rapid decay. Here we report the Pt anchored on NiFe-LDHs surface hybrid for stable methanol oxidation in alkaline media. Based on the high intrinsic methanol oxidation activity of Pt nanoparticles, the substrates NiFe-LDHs further enhanced anti-poisoning ability and maintained unaffected stability after 200,000 s cycle test compared to commercial Pt/C catalyst. The …


Preface To Special Issue: Electrocatalysis And Electrosynthesis (Ⅰ), Fang-Yi Cheng, Shuang-Yin Wang, Tian-Hua Zhou 2023 1. College of Chemistry, Nankai University, Tianjin 30071, China

Preface To Special Issue: Electrocatalysis And Electrosynthesis (Ⅰ), Fang-Yi Cheng, Shuang-Yin Wang, Tian-Hua Zhou

Journal of Electrochemistry

No abstract provided.


Supperlattice-Like Structure: Ordered Mass Transfer Endowing High Quality Output Of Fuel Cell, Jian Wang, Wen-Hui Xuan, Qian He, Jing-Xia Jiang, Yuan-Yuan Zhou, Yao Nie, Qiang Liao, Min-Hua Shao, Wei Ding, Zi-Dong Wei 2023 a Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China

Supperlattice-Like Structure: Ordered Mass Transfer Endowing High Quality Output Of Fuel Cell, Jian Wang, Wen-Hui Xuan, Qian He, Jing-Xia Jiang, Yuan-Yuan Zhou, Yao Nie, Qiang Liao, Min-Hua Shao, Wei Ding, Zi-Dong Wei

Journal of Electrochemistry

The current or voltage fluctuation in fuel cell operation is harmful to the fuel cell system and power application equipment. Here, we report a technique to eliminate such a fluctuation by the aid of new type of catalysts, superlattice-like mesoporous PtCo catalysts. The current fluctuation in fuel cells catalyzed by two invented catalysts are fixed at as low as 25 mA·cm−2 with a power of 0.75 W·cm−2 or 120 mA·cm−2 with a power of 1.01 W·cm−2, and no noticeable current decay was detected over 100 h. By contrast, a …


Recent Advances In Exploring Highly Active & Durable Pgm-Free Oxygen Reduction Catalysts, Yuan Li, Miao-Ying Chen, Bang-An Lu, Jia-Nan Zhang 2023 College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China

Recent Advances In Exploring Highly Active & Durable Pgm-Free Oxygen Reduction Catalysts, Yuan Li, Miao-Ying Chen, Bang-An Lu, Jia-Nan Zhang

Journal of Electrochemistry

In order to reduce the considerable usage of expensive but scarce platinum at the cathode in proton exchange membrane fuel cells (PEMFCs), it is necessary to pursue alternatives to platinum. The most promising platinum group metal (PGM)-free catalysts for oxygen reduction reaction (ORR) are atomically dispersed, and nitrogen-coordinated metal site catalysts denoted as M-N-C (M = Fe, Co, or Mn, etc.). Over the last few decades, there have been great advances in these catalysts with high ORR activity and promising initial fuel cell performance approaching traditional Pt/C catalysts. However, the stability of these highly active Fe-N-C catalysts under practical fuel …


Electrochemical Oxidation Of Ethylene On Palladium Electrode, Wei-Xing Wu, Ying Wang 2023 Chemistry Department, Chinese University of Hong Kong, Hong Kong 999077, China

Electrochemical Oxidation Of Ethylene On Palladium Electrode, Wei-Xing Wu, Ying Wang

Journal of Electrochemistry

The electrochemical oxidation of C2H4 is attracting increasing attention due to its vast potential market. The current electrochemical methods rely on the use of redox mediators, which may produce corrosive intermediates, while direct oxidation is still limited by its low activity and selectivity. Herein, we conducted electrochemical studies to obtain mechanistic insights into the benchmark Pd catalyst. The generated Pd(II) could be the active site for C2H4 oxidation. By designing the pulse sequence, we found the ratio of strongly and weakly adsorbed C2H4 on Pd to be 0.3:1. The result we …


Influence Of Synthesis Conditions On The Physicochemical And Electrocatalytic Properties Of Non-Stoichiometric Ba2sr2la2ti4o12 Perovskites, Ofeliya Kostadinova, Iliyan Popov, Simeon M. Stankov, Hristo Kolev, Tamara Petkov 2023 Institute of Electrochemistry and Energy Systems Acad. Evgeni Budevski, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl 10, 1113 Sofia, Bulgaria

Influence Of Synthesis Conditions On The Physicochemical And Electrocatalytic Properties Of Non-Stoichiometric Ba2sr2la2ti4o12 Perovskites, Ofeliya Kostadinova, Iliyan Popov, Simeon M. Stankov, Hristo Kolev, Tamara Petkov

Karbala International Journal of Modern Science

Present work studies the influence of the pretreatment milling media (deionized water (BLTOS-H) and isopropanol (BLTOS-i)) on the surface characteristics, structure, chemical composition and catalytic activity of non-stoichiometric Ba2Sr2La2Ti4O12 perovskites. The IR spectroscopy and XRD analyses shows a difference in the structure and phase composition of the two materials. X-ray photoelectron spectroscopy detects a Ba2+- and La3+-enriched and Sr2+-depleted surface. The BLTOS-i sample appears to exhibit higher specific surface area (SSA) and pore volume in comparison to BLTOS-H. The electrochemical tests showed that BLTOS-H sample have similar behavior to platinum at current densi-ties up to 10 mA cm-2, while BLTOS-i …


A Process Intensification Approach To Improve Volatile Fatty Acids Production, Extraction, And Valorization, Can Liu 2023 University of Kentucky

A Process Intensification Approach To Improve Volatile Fatty Acids Production, Extraction, And Valorization, Can Liu

Theses and Dissertations--Biosystems and Agricultural Engineering

Anaerobic digestion (AD) is a widely used biowaste conversion method. Recent studies have explored arrested methanogenesis as an alternative approach to leverage existing AD facilities and produce volatile fatty acids (VFAs) instead of biogas. VFAs have been recognized as precursors for a range of value-added chemicals and bioproducts. Arrested methanogenesis involves inducing acidic fermentation by halting the AD process before methanogenesis. It has been found that higher organic loading and thermophilic conditions enhance VFA accumulation and stabilize the acidic fermentation (AF) system.

Brewer's spent grain (BSG), a significant by-product of the brewing industry, was employed as the feedstock for VFA …


Microwave-Assisted Ammonia Synthesis Over Cs-Ru/Ceo2 Catalyst, Alazar Kesete Araia 2023 West Virginia University

Microwave-Assisted Ammonia Synthesis Over Cs-Ru/Ceo2 Catalyst, Alazar Kesete Araia

Graduate Theses, Dissertations, and Problem Reports

Ammonia synthesis is one of the greatest innovations of the 20th century with extensive applications from fertilizers to intermediates for nitrogen-containing chemicals and pharmaceuticals. Annually, more than 242 million tons of ammonia is produced globally, supporting approximately 27% of the world’s population. One of the fast-growing applications for ammonia is as H2 energy carrier due to its high energy storage capacity, considered to be a decarbonized energy source. The low volumetric energy density and incompressibility makes Hydrogen a non-preferable energy carrier; an alternative carrier becomes a requirement. Ammonia possesses unique property as an energy-dense carrier to store and …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown 2023 West Virginia University

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …


Running Shoe Pedometer, Benjamin Kasper 2023 The University of Akron

Running Shoe Pedometer, Benjamin Kasper

Williams Honors College, Honors Research Projects

Running shoe pedometer aims to solve the issue of worn out running shoes. It can be difficult to know just how many miles you have run in your shoes and when a new pair is needed. Running in old shoes and worn out shoes is heavily linked to injury. My proposed project is a device that is powered by the compressive forces on the shoes soles that counts the number of steps the wearer takes using a microcontroller. Then, when the shoe reaches milestone that indicate it has been used 75% 90% and 100% of its expected life, it will …


Level And Temperature Controlled Vessel, Cameron Macesich 2023 The University of Akron

Level And Temperature Controlled Vessel, Cameron Macesich

Williams Honors College, Honors Research Projects

Using two Arduino microcontrollers, level and temperature Proportional-Integral control systems for a continuously stirred tank reactor were designed and configured. Open-loop step tests were performed and fitted with First Order Plus Time Delay responses so that controller tuning parameters could be analytically derived. The effectiveness of the designed systems was evaluated by monitoring the response of closed-loop setpoint changes.


Synthesis And Characterization Of Hybrid Catalysts For Fischer-Tropsch Jet Fuel Production, Jack M. Steinagel 2022 Georgia Southern University

Synthesis And Characterization Of Hybrid Catalysts For Fischer-Tropsch Jet Fuel Production, Jack M. Steinagel

Honors College Theses

Climate change is a major issue that our world is facing today. Finding renewable options for current infrastructure is paramount to solving this issue. Fischer-Tropsch synthesis of syngas from gasified biomass can produce renewable fuels that can be used in current conventional combustion engines. In order to make this process more industrially viable, a higher selectivity towards the desired range of liquid hydrocarbon products must be achieved. A novel way to do this is to introduce a catalyst to the Fischer-Tropsch reaction. The catalyst’s physical and chemical properties can promote chain growth of specific hydrocarbons. For the purpose of this …


Synthesis Of Novel Chiral Phosphorothioic Acid Organocatalysts And Application To Synthetic Methodology, Parsa Azaei 2022 University of Nevada, Las Vegas

Synthesis Of Novel Chiral Phosphorothioic Acid Organocatalysts And Application To Synthetic Methodology, Parsa Azaei

Undergraduate Research Symposium Posters

Much research efforts have been centered towards the synthesis of novel Bronsted acid catalysts. These organocatalyst enable synthesis of natural products, pharmaceuticals, and bioactive small molecules under toxic-metal-free conditions by donating their protons, while not being consumed in the reaction. Chiral phosphorothioic acid have significant potential as novel organocatalysts due to their high modifiability of chirality and acidity under environmentally friendly conditions; however, synthesis of these organocatalysts are far and in between. Therefore, our research aimed to i) synthesize novel phosphorothioic acid organocatalysts and ii) to apply these novel catalysts toward new methodology development.


Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir 2022 Clemson University

Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir

All Dissertations

Advances in extraction of shale oil and gas has increased the production of geographically stranded natural gas (primarily consisting of methane (C1) and ethane (C2)) that is burned on site. A potential utilization strategy for shale gas is to convert it into fuel range hydrocarbons by catalytic dehydrogenation followed by oligomerization by direct efficient catalysts. This work focuses on understanding metal cation catalysts supported on metal-organic framework (MOF) NU-1000 that will actively and selectively do this transformation under mild reaction conditions, while remaining stable to deactivation (via metal agglomeration or sintering). I built computational models validated by experimental methods to …


Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He 2022 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China;2. China National Quality Supervision Testing Center for Industrial Explosive Materials, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu P.R. China;

Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He

Journal of Electrochemistry

Lithium layered oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is one of the most promising cathode materials in high-energy lithium-ion batteries for electric vehicles. However, one drawback for NCM622 is that its initial coulombic efficiency (ICE) is only about 87%, which is at least 6% lower than that of LiCoO2 or LiFePO4. In this work, we investigated the effects of surface chemical residues (e.g., LiOH and Li2CO3) and Li/Ni cation disorder resulted during the sintering on the ICE. We found that the ICE of the as-prepared samples could be boosted …


Catalytic Effect Of Disordered Ru-O Configurations For Electrochemical Hydrogen Evolution, Xue Sun, Ya-Jie Song, Ren-Long Li, Jia-Jun Wang 2022 1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150001, China;2. Chongqing Research Institute of HIT, Chongqing 401135, P. R. China;

Catalytic Effect Of Disordered Ru-O Configurations For Electrochemical Hydrogen Evolution, Xue Sun, Ya-Jie Song, Ren-Long Li, Jia-Jun Wang

Journal of Electrochemistry

Phase engineering is considered as an effective method for modulating the electronic structure and catalytic activity of catalysts. The disordered conformation of amorphous materials allows flexible reforming of the surface electronic structure, showing their attractiveness as catalysts for hydrogen evolution reaction (HER). Herein, we designed and developed an amorphous ruthenium dioxide (a-RuO2) catalyst with a disordered Ru-O configuration. The conformational relationship between Ru-O ordering and HER performance is established by combining advanced electron microscopic techniques with detailed electrochemical tests. Specifically, the disordered Ru-O coordination significantly enhanced the HER catalytic activity in both acidic and alkaline media, ultimately leading …


Alkaline Water Electrolysis For Efficient Hydrogen Production, Wen-Fu Xie, Ming-Fei Shao 2022 State Key Laboratory of Chemical Resource Engineering, College of Chemistry,Beijing University of Chemical Technology, Beijing 100029, China;

Alkaline Water Electrolysis For Efficient Hydrogen Production, Wen-Fu Xie, Ming-Fei Shao

Journal of Electrochemistry

Hydrogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with fossil fuel-based hydrogen. However, this promising technique suffers from the high energy consumption and unsatisfactory cost due to the sluggish kinetics of both half reaction and inferior stability of electrocatalysts. To address this challenge, herein, we present a timely and comprehensive review on advances in alkaline water electrolysis that is already commercialized for large scale hydrogen production. The design principles and strategies with aiming to promote the performance of hydrogen generation are discussed from the view of electrocatalyst, electrode, reaction and system. The challenges and …


A Self-Supported Ru-Cu3P Catalyst Toward Alkaline Hydrogen Evolution, Zi-Xuan Wan, Chao-Hui Wang, Xiong-Wu Kang 2022 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China;

A Self-Supported Ru-Cu3P Catalyst Toward Alkaline Hydrogen Evolution, Zi-Xuan Wan, Chao-Hui Wang, Xiong-Wu Kang

Journal of Electrochemistry

Transition metal phosphide (TMP) is a kind of effective catalysts toward hydrogen evolution reaction (HER) in alkaline electrolytes. However, the performance of TMP catalysts is strongly limited by water splitting. In this work, we developed a method to prepare a copper foam (CF) supported Ru-doped Cu3P catalyst (Ru-Cu3P/CF) by a consecutive growth of Cu(OH)2 nanoarrays, soaking in RuCl3 solution and phosphorization. A large surface area was obtained by the self-supported catalysts with the appropriative Ru doping. As an excellent HER catalyst, it exhibited a low overpotential of 95.6 mV at a current density of …


Alkaline Seawater Electrolysis At Industrial Level:Recent Progress And Perspective, Tao Zhang, Yi-Pu Liu, Qi-Tong Ye, Hong-Jin Fan 2022 1. School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,Singapore 637371, Singapore;

Alkaline Seawater Electrolysis At Industrial Level:Recent Progress And Perspective, Tao Zhang, Yi-Pu Liu, Qi-Tong Ye, Hong-Jin Fan

Journal of Electrochemistry

Industrial hydrogen generation through water splitting, powered by renewable energy such as solar, wind and marine, paves a potential way for energy and environment sustainability. However, state-of-the-art electrolysis using high purity water as hydrogen source at an industrial level would bring about crisis of freshwater resource. Seawater splitting provides a practical path to solve potable water shortage, but still faces great challenges for large-scale industrial operation. Here we summarize recent developments in seawater splitting, covering general mechanisms, design criteria for electrodes, and industrial electrolyzer for direct seawater splitting. Multi-objective optimization methods to address the key challenges of active sites, reaction …


Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li 2022 School of Materials Science and Engineering, Nanyang Technological University,50 Nanyang Avenue, Singapore, 639798, Singapore;

Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li

Journal of Electrochemistry

Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile …


Digital Commons powered by bepress