Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

5,720 Full-Text Articles 7,119 Authors 2,171,447 Downloads 115 Institutions

All Articles in Aerospace Engineering

Faceted Search

5,720 full-text articles. Page 3 of 195.

Innovative Schematic Concept Analysis For A Space Suit Portable Life Support Subsystem, M. Schuller, R. Kobrick, T. Lalk, L. Wiseman, F. Little, et al. 2019 Texas Engineering Experiment Station

Innovative Schematic Concept Analysis For A Space Suit Portable Life Support Subsystem, M. Schuller, R. Kobrick, T. Lalk, L. Wiseman, F. Little, Et Al.

Ryan L. Kobrick

Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies ...


Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street 2019 University of Colorado Boulder

Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street

Ryan L. Kobrick

The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed “Zone of Interaction” (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width as currently defined by the ASTM G 171 Standard. The ZOI has been found to be at least twice the size of a standard width measurement, in some cases considerably greater, indicating that at least half of the disturbed surface ...


Space Suit Concepts And Vehicle Interfaces For The Constellation Program, D. M. Klaus, J. Metts, R. Kobrick, M. Mesloh, T. Monk, et al. 2019 University of Colorado Boulder

Space Suit Concepts And Vehicle Interfaces For The Constellation Program, D. M. Klaus, J. Metts, R. Kobrick, M. Mesloh, T. Monk, Et Al.

Ryan L. Kobrick

In carrying out NASA’s Vision for Space Exploration, a number of different environments will be encountered that will require the crew to wear a protective space suit. Specifically, four suited mission phases are identified as Launch, Entry & Abort profiles, Contingency 0g (orbital) Extravehicular Activity (EVA), Lunar Surface EVA and Martian Surface EVA. This study presents conceptual design solutions based on a previous architecture assessment that defined space suit operational requirements for four proposed space suit configuration options. In addition, a subset of vehicle interface requirements are defined for enabling umbilical and physical connections between the suits and the various ...


Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards: In Principle, Any Scratch Can Be Analyzed By This Method, Kenneth W. Street, Ryan L. Kobrick, David M. Klaus 2019 NASA Glenn Research Center

Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards: In Principle, Any Scratch Can Be Analyzed By This Method, Kenneth W. Street, Ryan L. Kobrick, David M. Klaus

Ryan L. Kobrick

Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two ...


Developing Abrasion Test Standards For Evaluating Lunar Construction Materials, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street 2019 University of Colorado Boulder

Developing Abrasion Test Standards For Evaluating Lunar Construction Materials, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street

Ryan L. Kobrick

Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards ...


Defining An Abrasion Index For Lunar Surface Systems As A Function Of Dust Interaction Modes And Variable Concentration Zones, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street Jr. 2019 University of Colorado Boulder

Defining An Abrasion Index For Lunar Surface Systems As A Function Of Dust Interaction Modes And Variable Concentration Zones, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street Jr.

Ryan L. Kobrick

Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and sub-categorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a ...


Computation Of Flow Fields Due To Single- And Twin-Jet Impingement, Xiang Zhang 2019 Washington University in St. Louis

Computation Of Flow Fields Due To Single- And Twin-Jet Impingement, Xiang Zhang

Engineering and Applied Science Theses & Dissertations

The thesis consists of two parts. The first part focuses on numerical simulations and their comparison with experimental data for single-jet impingement on ground. Angles between the axisymmetric jet and impingement surface considered are 15, 30 and 90 degree. It is shown that both the k-epsilon and Wray-Agarwal (WA) model can predict the flow fields in good agreement with the experimental results. The second part extends the first part to twin-jet normal impingement on the ground. It focuses on numerical simulation of fountains formed by the twin-jet impingement. The fountains can be normal straight upward when the two jets are ...


High-Pressure Phase Transformations Under Severe Plastic Deformation By Torsion In Rotational Anvils, Valery I. Levitas 2019 Iowa State University and Ames Laboratory

High-Pressure Phase Transformations Under Severe Plastic Deformation By Torsion In Rotational Anvils, Valery I. Levitas

Valery I. Levitas

Numerous experiments have documented that combination of severe plastic deformation and high mean pressure during high-pressure torsion in rotational metallic, ceramic, or diamond anvils produces various important mechanochemical effects. We will focus here on four of these: plastic deformation (a) significantly reduces pressure for initiation and completion of phase transformations (PTs), (b) leads to discovery of hidden metastable phases and compounds, (c) reduces PT pressure hysteresis, and (d) substitutes a reversible PT with irreversible PT. The goal of this review is to summarize our current understanding of the underlying phenomena based on multiscale atomistic and continuum theories and computational modeling ...


Access Mars: Assessing Cave Capabilities Establishing Specific Solutions: Final Report, Abdul Mohsen Al Husseini, Luis Alvarez Sanchez, Konstantinos Antonakopoulos, Jeffrey (Johannes) Apeldoorn, Kenneth Lowell Ashford Jr., Kutay Deniz Atabay, Sara Langston, et al. 2019 Selected Works

Access Mars: Assessing Cave Capabilities Establishing Specific Solutions: Final Report, Abdul Mohsen Al Husseini, Luis Alvarez Sanchez, Konstantinos Antonakopoulos, Jeffrey (Johannes) Apeldoorn, Kenneth Lowell Ashford Jr., Kutay Deniz Atabay, Sara Langston, Et Al.

Sara Langston

The human race has evolved, grown and expanded through the exploration of Earth. After initial steps on the Moon, our next challenge is to explore the solar system. Mars shows potential for both scientific discovery and future human settlement, and so is a prime candidate for the next leap of human exploration. Such a bold endeavor will be a driver for an unprecedented worldwide cooperative effort and the catalyst for a new era of international, intercultural and interdisciplinary human relations. Scientific and technological progress will also accelerate as mankind is ushered into a new era of space exploration.

Currently proposed ...


Sufficient Conditions For Optimal Control Problems With Terminal Constraints And Free Terminal Times With Applications To Aerospace, Sankalp Kishan Bhan 2019 Washington University in St. Louis

Sufficient Conditions For Optimal Control Problems With Terminal Constraints And Free Terminal Times With Applications To Aerospace, Sankalp Kishan Bhan

Engineering and Applied Science Theses & Dissertations

Motivated by the flight control problem of designing control laws for a Ground Collision Avoidance System (GCAS), this thesis formulates sufficient conditions for a strong local minimum for a terminally constrained optimal control problem with a free-terminal time. The conditions develop within the framework of a construction of a field of extremals by means of the method of characteristics, a procedure for the solution of first-order linear partial differential equations, but modified to apply to the Hamilton-Jacobi-Bellman equation of optimal control. Additionally, the thesis constructs these sufficient conditions for optimality with a mathematically rigorous development. The proof uses an approach ...


Reimagining Icarus: Ethics, Law And Policy Considerations For Commercial Human Spaceflight, Sara M. Langston 2019 Senmurv Consulting LLC

Reimagining Icarus: Ethics, Law And Policy Considerations For Commercial Human Spaceflight, Sara M. Langston

Sara Langston

Commercial human spaceflight presents an area for engaging novel human activity and objectives, to include space exploration, entertainment, transportation and extraterrestrial resource acquisition. The inherent dangers and lack of scientific and medical certainty involved however raise interrelated questions of ethics, bioethics, law and public policy. This is particularly the case with spaceflight participant (SFP) screening, selection, and commercial human spaceflight activities where regulations are currently silent or lacking. In the absence of established law, ethics can play an important role by informing industry standards, policies and best practices. Understanding the fundamental ethical values at stake in the application of new ...


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey 2019 Olivet Nazarene University

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis ...


A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson 2019 Embry-Riddle Aeronautical University

A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson

Richard Stansbury

For safe flight in the National Airspace System (NAS), either under the current interim rules or under anticipated longer-term regulatory guidelines facilitating unmanned aircraft system (UAS) access to the NAS, the UAS must incorporate technologies and flight procedures to ensure that neither people nor property in the air, on the ground, or on or in the water are endangered by the failure of an onboard component, by inappropriate unmanned aircraft (UA) response to pilot commands, or by inadvertent entry by the UA into prohibited airspace. The aircraft must be equipped with emergency recovery (ER) procedures and technologies that ensure that ...


Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza III, Jose Quinonez, Misael Santana, Nibhrat Lohia 2019 Southern Methodist University

Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia

SMU Data Science Review

In this paper, we help NASA solve three Exploration Mission-1 (EM-1) challenges: data storage, computation time, and visualization of complex data. NASA is studying one year of trajectory data to determine available launch opportunities (about 90TBs of data). We improve data storage by introducing a cloud-based solution that provides elasticity and server upgrades. This migration will save $120k in infrastructure costs every four years, and potentially avoid schedule slips. Additionally, it increases computational efficiency by 125%. We further enhance computation via machine learning techniques that use the classic orbital elements to predict valid trajectories. Our machine learning model decreases trajectory ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino 2019 Lynchburg College

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases ...


Subscale Mars Colonization Mission, Cameron J. LaMack, James Lumsden, Sean Nevin, Donner Schoeffler, Riley Evers, Alexandra Poulakos, Skyler Tan, Anthony Keba, Siraj Zaman, Ali AlTamimi, anthony Modica 2019 Loyola Marymount University and Loyola Law School

Subscale Mars Colonization Mission, Cameron J. Lamack, James Lumsden, Sean Nevin, Donner Schoeffler, Riley Evers, Alexandra Poulakos, Skyler Tan, Anthony Keba, Siraj Zaman, Ali Altamimi, Anthony Modica

Honors Thesis

The team will compete in the SAE (Society of Automotive Engineers) Aero Design West Advanced Class competition, held 5-7th April 2019 in Van Nuys, California. The team will work to develop, through research, design, optimizational trade studies, and manufacturing, a system for the deployment of parasitic aircraft, as well as payload. The system will consist of a primary fixed-wing aircraft, parasitic autonomous gliders, a real-time altitude data acquisition system, as well as both static and releasable payload. The deployable gliders must navigate autonomously to a targeting area on the ground without any on-board propulsion. The releasable payload, which will consist ...


Experimental And Computational Analysis Of A 3d Printed Wing Structure, Aryslan Malik 2019 Embry-Riddle Aeronautical University

Experimental And Computational Analysis Of A 3d Printed Wing Structure, Aryslan Malik

Dissertations and Theses

Correct prediction of aeroelastic response is a crucial part in designing flutter or divergence free aircrafts within a designated flight envelope. The aeroelastic analysis includes specifically tailoring the design in order to prevent flutter (passive control) or eliminate it by applying input on control surfaces (active control). High-fidelity models such as coupled Computational Fluid Dynamics (CFD) - Computational Structural Dynamics (CSD) can obtain full structural and aerodynamic behavior of a deformable aircraft. However, these models are so large that pose a significant challenge from the control systems design perspective. Thus, the development of an aeroelastic modeling software that can be used ...


Adaptive Commanding Of Control Moment Gyroscopes With Backlash, Justin G. Bourke 2019 Embry-Riddle Aeronautical University

Adaptive Commanding Of Control Moment Gyroscopes With Backlash, Justin G. Bourke

Dissertations and Theses

The existence of backlash in mechanical systems provides significant challenges when attempting to control these systems to a high degree of precision. The imperfect meshing of gear or belt teeth deteriorates the performance of position controllers and tracking of small commands, producing unacceptable steady-state offsets, increased rise and settling times. Agile spacecraft often use control moment gyroscopes (CMGs) equipped with gear trains to efficiently provide torque for the fine attitude adjustments used in docking and precision stabilization maneuvers. A theoretical examination and a practical model is developed to study the effectiveness of both proportional-integral (PI) and model referencing adaptive controllers ...


Development Of Robust Control Laws For Disturbance Rejection In Rotorcraft Uavs, Johannes Verberne 2019 Embry-Riddle Aeronautical University

Development Of Robust Control Laws For Disturbance Rejection In Rotorcraft Uavs, Johannes Verberne

Dissertations and Theses

Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind ...


Covering Shock Wave Induced Interfacial Mixing: Numerical Study And A Control Primer, Erik S. Proaño 2019 Embry-Riddle Aeronautical University

Covering Shock Wave Induced Interfacial Mixing: Numerical Study And A Control Primer, Erik S. Proaño

Dissertations and Theses

This document is aiming toward deepening the understanding of the phenomena of mixing and the effect of the initial conditions in the cylindrical & spherical Richtmyer-Meshkov and Rayleigh-Taylor Instabilities. This work is focused on identifying the most energetic structures of the ow in order to define a reduced order model intended for modeling the evolution of the mixing layer after reshocking the density interface. Initially, Simulations are implemented for the two dimensional case of a cylindrical shock wave convergently approaching an initially wave-like perturbed density discontinuity formed by a target of Sulfur Hexauoride immersed into unshocked air with Atwood number of 0.67. The perturbation is varied by setting different values for the wave amplitude and wave-number; the amplitude and wave-number effects on late-time mixing are studied separately and then such perturbation features are coupled together in the analysis of single- and multi-mode well-defined cylindrical perturbations. The simulation data is then utilized as a mechanism for obtaining a model equation intended to predict the mixing layer evolution using a Proper Orthogonal Decomposition. The ultimate goal of the POD is to model the evolution after reshock which has been the main issue to be tackled ...


Digital Commons powered by bepress