Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

5,720 Full-Text Articles 7,119 Authors 2,171,447 Downloads 115 Institutions

All Articles in Aerospace Engineering

Faceted Search

5,720 full-text articles. Page 7 of 195.

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch 2019 Air Force Institute of Technology

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch

Theses and Dissertations

Direct numerical simulation (DNS) computational fluid dynamic (CFD) calculations were performed on a 30° slice of 7° half-angle cones with increasing nose radii bluntness at Mach 10 while simulating a distributed roughness pattern on the cone surface. These DNS computations were designed to determine if the non-modal transition behavior observed in testing performed at the Arnold Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9 was induced via distributed surface roughness. When boundary layer transition is dominated by second mode instabilities, an increase in nose radius delays the transition location downstream. However, blunt nose experiments indicated that as the nose radius ...


Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt 2019 Air Force Institute of Technology

Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt

Theses and Dissertations

Wind tunnels play an indispensable role in the process of aircraft design, providing a test bed to produce valuable, accurate data that can be extrapolated to actual flight conditions. Historically, time-averaged data has made up the bulk of wind tunnel research, but modern flight design necessitates the use of dynamic wind tunnel testing to provide time-accurate data for high frequency motion. This research explores the use of a 6 degree of freedom (DOF) motion test apparatus (MTA) in the form of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed trajectories to obtain time-accurate force ...


Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders 2019 Air Force Institute of Technology

Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders

Theses and Dissertations

The primary objective of this research is to support the static and dynamic characterization and the time-accurate dynamic load data acquisition of store separation from a cavity with leading edge oscillatory blowing. Developing an understanding of, and potentially controlling, pitch bifurcation of a store release is a motivation for this research. The apparatus and data acquisition system was used in a two-part experiment to collect both static and dynamic testing data in the AFIT low speed wind tunnel in speeds of 60, 100, and 120 mph, from Reynolds numbers varying from 5.5x104 to 4.6x105, depending on ...


Sheet Velocity Measurements Using Laser Absorption Spectroscopy In A Xenon Hall Effect Thruster Plume, Avery W. Leonard 2019 Air Force Institute of Technology

Sheet Velocity Measurements Using Laser Absorption Spectroscopy In A Xenon Hall Effect Thruster Plume, Avery W. Leonard

Theses and Dissertations

A new laser absorption spectroscopy (LAS) velocimetry system, designed to obtain 2D planar velocity fields for ionized Xenon in the plume of a Hall effect thruster by probing the transition of Xe II at 834.72 nm, was implemented at the Air Force Institute of Technology (AFIT) Space Propulsion Analysis and System Simulator (SPASS) Lab vacuum chamber. A single horizontal laser sheet was used to probe singly-ionized Xenon in the plume of a Busek BHT-600 Hall thruster and obtain a histogram of estimated axial velocity, to validate the system. Similar velocities to those obtained by an earlier intrusive characterization of ...


Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller 2019 Air Force Institute of Technology

Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller

Theses and Dissertations

Recent progress has been made in demonstrating Radial Rotating Detonation Engine (RRDE) technology for use in a compact Auxiliary Power Unit with a rapid response time. Investigation of RRDEs also suggests an increase in stable operating range, which is hypothesized to be due to the additional degree of freedom in the radial direction which the detonation wave can propagate. This investigation seeks to determine if the detonation wave is in fact changing its radial location. High speed photography was used to capture chemiluminescence of the detonation wave within the channel to examine its radial location, which was found to vary ...


Limited-Duty-Cycle Satellite Formation Control Via Differential Drag, Talon A. Townley 2019 Air Force Institute of Technology

Limited-Duty-Cycle Satellite Formation Control Via Differential Drag, Talon A. Townley

Theses and Dissertations

As CubeSat formation flying missions relying on differential drag control become increasingly common, additional missions based on this control must be studied. A mission planning tool is investigated to control the relative spacing of a CubeSat formation where differential drag is the sole control mechanism. System performance is investigated under varying perturbations and a range of system parameters, including limiting the control duty cycle. Optimal solutions based on using a pseudo spectral numerical solver, GPOPS-II, to minimize maneuver time. This study includes the development of a mission planning tool to work with the modeled CubeSat mission to calculate optimal maneuvers ...


Nde In-Process For Metal Parts Fabricated Using Powder Based Additive Manufacturing, Leonard J. Bond, Lucas W. Koester, Hossein Taheri 2019 Iowa State University

Nde In-Process For Metal Parts Fabricated Using Powder Based Additive Manufacturing, Leonard J. Bond, Lucas W. Koester, Hossein Taheri

Aerospace Engineering Publications

Ensuring adequate quality for additive manufactured (AM) materials presents unique metrology challenges to the on-line process measurement and nondestructive evaluation (NDE) communities. AM parts now have complex forms that are not possible using subtractive manufacturing and there are moves for their use in safety criticality components. This paper briefly reviews the status, challenges and metrology opportunities throughout the AM process from powder to finished parts. The primary focus is on new acoustic signatures that have been demonstrated to correlate process parameters with on-line measurement for monitoring and characterization during the build. In-process, quantitative characterization and monitoring of material state is ...


Incidence Of An Astronaut Not Sealing The Pressure Garment Visor On Reentry, Cameron M. Smith, Trent Tresch 2019 Portland State University

Incidence Of An Astronaut Not Sealing The Pressure Garment Visor On Reentry, Cameron M. Smith, Trent Tresch

Journal of Human Performance in Extreme Environments

Audiovisual records of a Project Mercury pilot’s activities during an orbital flight indicate that his visor was left open during reentry and descent to the sea surface, phases of flight during which cabin pressure loss was to be mitigated by suit pressurization; however, the suit could not have been pressurized with the visor open. Thus, for a presently unknown reason, a critical safety step—sealing the visor and making a pressure suit integrity test before reentry—was overlooked in this flight. Later, Space Shuttle flights were carried out with visors unsealed for much of the launch and landing phases ...


Application Of Metamaterials For Multifunctional Satellite Bus Enabled Via Additive Manufacturing, Michael A. Macchia 2019 Air Force Institute of Technology

Application Of Metamaterials For Multifunctional Satellite Bus Enabled Via Additive Manufacturing, Michael A. Macchia

Theses and Dissertations

Space systems require materials with superior stiffness to weight ratios to provide structural integrity while minimizing mass. Additive manufacturing processes enable the design of metamaterials that exceed the performance of naturally occurring materials in addition to allowing the integration of non-structural functions. This research explored the use of a high stiffness, high density, small melt pool track width AM material, Inconel 718, to enable the production of metamaterials with finer features possible than can possibly be created using a lower density aluminum alloy material. Various metamaterials were designed utilizing thin wall triply periodic minimal surface infilled sandwich structures. The performance ...


Sweep And Taper Analysis Of Surfboard Fins Using Computational Fluid Dynamics, Brandon James Baldovin 2019 California Polytechnic State University, San Luis Obispo

Sweep And Taper Analysis Of Surfboard Fins Using Computational Fluid Dynamics, Brandon James Baldovin

Master's Theses and Project Reports

The research presented here provides a basis for understanding the hydrodynamics of surfboard fin geometries. While there have been select studies on fins there has been little correlation to the shape of the fin and its corresponding hydrodynamic performance. This research analyzes how changing the planform shape of a surfboard fin effects its performance and flow field. This was done by isolating the taper and sweep distribution of a baseline geometry and varying each parameter individually whilst maintaining a constant span and surface area. The baseline surfboard fin was used as a template in Matlab to generate a set of ...


Assessment Of Turbulence Models In A Hypersonic Cold-Wall Turbulent Boundary Layer, Junji Huang, Jorge-Valentino Bretzke, Lian Duan 2019 Missouri University of Science and Technology

Assessment Of Turbulence Models In A Hypersonic Cold-Wall Turbulent Boundary Layer, Junji Huang, Jorge-Valentino Bretzke, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this study, the ability of standard one- or two-equation turbulence models to predict mean and turbulence profiles, the Reynolds stress, and the turbulent heat flux in hypersonic cold-wall boundary-layer applications is investigated. The turbulence models under investigation include the one-equation model of Spalart-Allmaras, the baseline k-ω model by Menter, as well as the shear-stress transport k-ω model by Menter. Reynolds-Averaged Navier-Stokes (RANS) simulations with the different turbulence models are conducted for a flat-plate, zero-pressure-gradient turbulent boundary layer with a nominal free-stream Mach number of 8 and wall-to-recovery temperature ratio of 0.48, and the RANS results are compared with ...


Emerging Need For A European Approach To Space Traffic Management, Tomas Hrozensky 2019 European Space Policy Institute

Emerging Need For A European Approach To Space Traffic Management, Tomas Hrozensky

Space Traffic Management Conference

The intensification of space activities worldwide, together with the emergence of new actors and disruptive concepts (e.g. miniaturized satellites, mega-constellations, in-orbit operations), create new challenges to ensure the safety and security of space systems and operations as well as the long-term sustainability of space activities. Among policy responses to these challenges, the development of a new approach to space traffic management was recently brought to the forefront by the adoption of a policy directive in this domain by the United States.

A comparable STM policy has not yet been developed in Europe even though considerations for the safety, security ...


Satellite Conjunction Assessment Risk Analysis For “Dilution Region” Events: Issues And Operational Approaches, Matthew D. Hejduk 2019 Astrorum Consulting LLC

Satellite Conjunction Assessment Risk Analysis For “Dilution Region” Events: Issues And Operational Approaches, Matthew D. Hejduk

Space Traffic Management Conference

An important activity within Space Traffic Management is the detection and prevention of possible on-orbit collisions between space objects. The principal parameter for assessing collision likelihood is the probability of collision, which is widely accepted among conjunction assessment practitioners; but it possesses a known deficiency in that it can produce a false sense of safety when the orbital position uncertainties for the conjuncting objects are high. The probability of collision is said to be “diluted” in such a situation and to understate the possible risk; certain approaches have been recommended by researchers to provide (largely conservative) risk estimates and remediation ...


End To End Satellite Servicing And Space Debris Management, Aman Chandra, Himangshu Kalita, Roberto Furfaro, Jekan Thanga 2019 Univ. of Arizona

End To End Satellite Servicing And Space Debris Management, Aman Chandra, Himangshu Kalita, Roberto Furfaro, Jekan Thanga

Space Traffic Management Conference

There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively deorbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service ...


Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga 2019 University of Arizona

Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga

Space Traffic Management Conference

The exponential rise in small-satellites and CubeSats in Low Earth Orbit (LEO) poses important challenges for future space traffic management. At altitudes of 600 km and lower, aerodynamic drag accelerates de-orbiting of satellites. However, placement of satellites at higher altitudes required for constellations pose important challenges. The satellites will require on-board propulsion to lower their orbits to 600 km and let aerodynamic drag take-over. In this work we analyze solutions for de-orbiting satellites at altitudes of up to 3000 km. We consider a modular robotic de-orbit device that has stowed volume of a regular CubeSat. The de-orbit device would be ...


Space Objects Classification And Characterization Via Deep Learning And Light Curves: Applications To Space Traffic Management, Roberto Furfaro, Richard Linares, Vishnu Reddy 2019 University of Arizona

Space Objects Classification And Characterization Via Deep Learning And Light Curves: Applications To Space Traffic Management, Roberto Furfaro, Richard Linares, Vishnu Reddy

Space Traffic Management Conference

Recent advancements in deep learning (e.g. Convolutional Neural Networks (CNN), Recurrent Neural networks (RNN)) have demonstrated impressive results in many practical and theoretical fields (e.g. speech recognition, computer vision, robotics). Whereas deep learning methods are becoming ubiquitous, they have been barely explored in SSA applications, in particular with regard to object characterization for Space Traffic Management (STM).

In this paper, we report the results obtained in designing and training a set of CNNs and RNNs for Space Object (SO) classification and characterization using light-curve measurements. More specifically, we provide a comparison between deep networks trained on both physically-based ...


Lasers For Communication And Coordination Control Of Spacecraft Swarms, Himangshu Kalita, Leonard Dean Vance, Vishnu Reddy, Jekan Thanga 2019 University of Arizona

Lasers For Communication And Coordination Control Of Spacecraft Swarms, Himangshu Kalita, Leonard Dean Vance, Vishnu Reddy, Jekan Thanga

Space Traffic Management Conference

Swarms of small spacecraft offer whole new capabilities in Earth observation, global positioning and communications compared to a large monolithic spacecraft. These small spacecraft can provide bigger apertures that increase gain in communication antennas, increase area coverage or effective resolution of distributed cameras and enable persistent observation of ground or space targets. However, there remain important challenges in operating large number of spacecrafts at once. Current methods would require a large number of ground operators monitor and actively control these spacecraft which poses challenges in terms of coordination and control which prevents the technology from scaled up in cost-effective manner ...


Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah 2019 The University of Texas at Austin

Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah

Space Traffic Management Conference

The necessity for standards-based ontologies for long-term sustainability of space operations and safety of increasing space flights has been well-established [6, 7]. Current ontologies, such as DARPA’s OrbitOutlook [5], are not publicly available, complicating efforts for their broad adoption. Most sensor data is siloed in proprietary databases [2] and provided only to authorized users, further complicating efforts to create a holistic view of resident space objects (RSOs) in order to enhance space situational awareness (SSA).

The ASTRIA project is developing an open data model with the goal of aggregating data about RSOs, parts, space weather, and governing policies in ...


Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner 2019 Aerospace

Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner

Space Traffic Management Conference

Nanosats (and CubeSats, ‘Smallsats’, etc.) are of order 10 cm in size, and are at or near the limits of what can be tracked and characterized, using existing space surveillance assets. Additionally, given the CubeSat form-factor, they are often launched in large numbers (scores), and can be virtually identical. Thus are they difficult to track and to identify.

We have identified a number of technologies that future nanosat missions could employ that would enhance the trackability and/or identification of their satellites when on-orbit. Some of these technologies require active illumination of the satellite with electromagnetic energy, either in the ...


Near Real Time Satellite Event Detection And Characterization With Remote Photoacoustic Signatures, Justin Spurbeck, Moriba K. Jah 2019 University of Texas at Austin

Near Real Time Satellite Event Detection And Characterization With Remote Photoacoustic Signatures, Justin Spurbeck, Moriba K. Jah

Space Traffic Management Conference

Active satellites frequently maneuver to mitigate conjunctions and maintain nominal mission orbits. With an ever-growing Resident Space Object (RSO) population, the need to detect and predict any changes in active RSO trajectories has become increasingly important. There is typically a lag on the order of hours to days from time of maneuver to unmodeled dynamic event detection depending on the magnitude of the delta-v. For uncooperative objects, this detection lag poses a threat to other satellites. Implementing an active photoacoustic signature change detection methodology to detect and predict unmodeled dynamic events would reduce the overall conjunction risk and provide a ...


Digital Commons powered by bepress