Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

450 Full-Text Articles 572 Authors 195,653 Downloads 50 Institutions

All Articles in Navigation, Guidance, Control and Dynamics

Faceted Search

450 full-text articles. Page 1 of 19.

Attitude Determination And Control Of Arksat-1, Jared Gilliam 2020 University of Arkansas, Fayetteville

Attitude Determination And Control Of Arksat-1, Jared Gilliam

Mechanical Engineering Undergraduate Honors Theses

ARKSAT-1 is a nanosatellite developed at the University of Arkansas as part of NASA’s CubeSat Launch Initiative (CSLI). The goal of ARKSAT-1 is to utilize an LED emitter paired with a ground-based tracking system to perform measurements of the composition of the atmosphere using spectroscopy. As part of its function, it is imperative that the satellite is able to control its orientation so that the emitter is aligned as closely as possible with the ground tracker. To do this, the attitude control system of ARKSAT-1 uses magnetic actuators to create a torque on the satellite by interacting with Earth ...


Analytic Guidance Strategies For Passively Safe Rendezvous And Proximity Operations, Simon Shuster 2020 Utah State University

Analytic Guidance Strategies For Passively Safe Rendezvous And Proximity Operations, Simon Shuster

All Graduate Theses and Dissertations

A safety ellipse is a type of relative motion trajectory that is commonly used for unmanned rendezvous and proximity operations. As the name suggests, safety ellipses are passively safe relative motion trajectories, which means that their natural motion inherently maintains a low collision risk. The focus of this dissertation is the derivation, analysis, and application of guidance strategies that reconfigure, establish, and exit a safety ellipse. The guidance strategies consist of a set of ∆v vectors and impulse times, all written in closed form. Through applications of optimal control theory and parameter optimization, it is shown that these maneuver sequences ...


Geomagnetic Aided Dead-Reckoning Navigation, Andrei Cuenca 2020 Embry-Riddle Aeronautical University

Geomagnetic Aided Dead-Reckoning Navigation, Andrei Cuenca

PhD Dissertations and Master's Theses

The dependence of modern navigation methods on global positioning systems has led to developing alternative algorithms for localization, capable of providing reliable and robust estimations. Global position system is commonly used in a vast majority of the world’s devices, and it can supply real time position and velocity information. However, its accuracy can be compromised by external operational effects such as signal availability, cyber-attacks or weather conditions. This thesis investigates an alternative approach to enhance navigation in GPS-denied environments. Particularly, it develops an integrated navigation architecture based on geomagnetic referencing models capable of dead reckoning at GPS denied intervals ...


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William MacKunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu 2020 Embry-Riddle Aeronautical University

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is ...


Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum 2020 Southwestern Oklahoma State University

Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum

Programs

In celebration of the 90th birthday of Oklahoma astronaut and aerospace legend, Gen. Thomas P. Stafford, the Stafford Air & Space Museum in Weatherford, Oklahoma is offering free admission on September 17th, 2020.


Investigation Of Factors Impacting A Helicopter Height-Velocity Diagram, Timothy A. Brown 2020 Air Force Institute of Technology

Investigation Of Factors Impacting A Helicopter Height-Velocity Diagram, Timothy A. Brown

Theses and Dissertations

A dynamic helicopter model was incorporated into an optimal control problem to determine minimal landing velocities. The solutions were determined using pseudospectral collocation methods as implemented by the GPOPS-II software. These solutions were then compiled to develop a HV diagram. An HV diagram displays regions of flight based on a helicopter's airspeed and height above the ground in which a safe landing would not be possible following engine failure. The applied methodology for constructing the HV diagram reduced issues involving solution convergence that was encountered in previous research. The influence of ground effect on the dynamic model was also ...


Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola 2020 University of Nebraska - Lincoln

Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola

Computer Science and Engineering: Theses, Dissertations, and Student Research

Use of unmanned aerial systems (UASs) in agriculture has risen in the past decade. These systems are key to modernizing agriculture. UASs collect and elucidate data previously difficult to obtain and used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this paper, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS leveraging the physical presence of the tether to launch multiple sensors along ...


Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima 2020 California Polytechnic State University, San Luis Obispo

Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima

Master's Theses

Currently, the South Pole has a large data problem. It is estimated that 1.2 TB of data is being produced every day, but less than 500 GB of that data is being uploaded via aging satellites to researchers in other parts of the world. This requires those at the South Pole to analyze the data and carefully select the parts to send, possibly missing out on vital scientific information. The South Pole Carrier Pigeon will look to bridge this data gap.

The Carrier Pigeon will be a small unmanned aerial vehicle that will carry a 30 TB solid-state hard ...


Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet 2020 Univeristy of Maine

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) expand the available mission-space for a wide range of budgets. Using MATLAB, this project has developed a six degree of freedom (6DOF) simulation of UAV flight, an Extended Kalman Filter (EKF), and an algorithm for localizing radioactive sources using low-cost hardware. The EKF uses simulated low-cost instruments in an effort to estimate the UAV state throughout simulated flight.

The 6DOF simulates aerodynamics, physics, and controls throughout the flight and provides outputs for each time step. Additionally, the 6DOF simulation offers the ability to control UAV flight via preset waypoints or in realtime via keyboard input.

Using ...


Aircraft Leading Edge Strakes On Conventional Naca Wings, Anthony Pirone 2020 Embry-Riddle Aeronautical University

Aircraft Leading Edge Strakes On Conventional Naca Wings, Anthony Pirone

Discovery Day - Prescott

The prevention of stall on aircraft wings has been a great challenge over the history of airplanes. As the aircraft become more and more complex, it becomes harder to fit high lift devices and leading-edge devices onto high camber, supercritical airfoil aircraft wings. In the fighter jet class of aircraft the obstacle of stall is usually delayed by the implementation of leading-edge root extensions or strakes. Strakes create a tip vortice along the sharp leading edge that transitions over the surface of the wing preventing separation on both the upper and lower surface of the wing allowing the fighter jet ...


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee 2020 Air Force Institute of Technology

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose ...


Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry 2020 Air Force Institute of Technology

Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry

Theses and Dissertations

The Global Navigation Satellite System continues to become deeply em-bedded within modern civilization, and is depended on for confident, accurate navigation information. High precision position and timing accuracy is typically achieved using differential processing, however these systems provide limited compensation for distortions caused by multi-path or faulty satellite hardware. Signal Quality Monitoring (SQM) aims to provide confidence in a receivers Position, Navigation, and Timing solution and to offer timely warnings in the event that signal conditions degrade to unsafe levels. The methods presented in this document focus on implementing effective SQM using low-cost Commercial Off-the-Shelf equipment, a Software Defined Radio ...


Flight Characteristic Verification Of The Variable Camber Compliant Wing, Sharee B. Acosta 2020 Air Force Institute of Technology

Flight Characteristic Verification Of The Variable Camber Compliant Wing, Sharee B. Acosta

Theses and Dissertations

Morphing wing technology gives aircraft the ability to change wing shape to control the aircraft and flight performance characteristics. AFIT, AFRL and USU Aero Lab have collaborated to design and test a variable camber compliant wing (VCCW) on a small unmanned aerial vehicle (UAV). Flight tests demonstrated the wing performance and provided data to refine a VCCW flight simulator. Work was completed with the USU AeroLab-generated MachUp and the actual flight data to improve the simulator to provide results close to those of the actual flight test. The research provides a tool to reduce time and cost for future flight ...


Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki 2020 Air Force Institute of Technology

Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki

Theses and Dissertations

Performing flight tests is a natural part of researching cutting edge sensors and filters for sensor integration. Unfortunately, tests are expensive, and typically take many months of planning. A sensible goal would be to make previously collected data readily available to researchers for future development. The Air Force Institute of Technology (AFIT) has hundreds of data logs potentially available to aid in facilitating further research in the area of navigation. A database would provide a common location where older and newer data sets are available. Such a database must be able to store the sensor data, metadata about the sensors ...


Semantic Segmentation Of Aerial Imagery Using U-Nets, Terence J. Yi 2020 Air Force Institute of Technology

Semantic Segmentation Of Aerial Imagery Using U-Nets, Terence J. Yi

Theses and Dissertations

In situations where global positioning systems are unavailable, alternative methods of localization must be implemented. A potential step to achieving this is semantic segmentation, or the ability for a model to output class labels by pixel. This research aims to utilize datasets of varying spatial resolutions and locations to train a fully convolutional neural network architecture called the U-Net to perform segmentations of aerial images. Variations of the U-Net architecture are implemented and compared to other existing models in order to determine the best in detecting buildings and roads. A final dataset will also be created combining two datasets to ...


Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson 2020 Air Force Institute of Technology

Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson

Theses and Dissertations

While Convolutional Neural Networks (CNNs) can estimate frame-to-frame (F2F) motion even with monocular images, additional inputs can improve Visual Odometry (VO) predictions. In this thesis, a FlowNetS-based [1] CNN architecture estimates VO using sequential images from the KITTI Odometry dataset [2]. For each of three output types (full six degrees of freedom (6-DoF), Cartesian translation, and transitional scale), a baseline network with only image pair input is compared with a nearly identical architecture that is also given an additional rotation estimate such as from an Inertial Navigation System (INS). The inertially-aided networks show an order of magnitude improvement over the ...


Improving Aeromagnetic Calibration Using Artificial Neural Networks, Mitchell C. Hezel 2020 Air Force Institute of Technology

Improving Aeromagnetic Calibration Using Artificial Neural Networks, Mitchell C. Hezel

Theses and Dissertations

The Global Positioning System (GPS) has proven itself to be the single most accurate positioning system available, and no navigation suite is found without a GPS receiver. Even basic GPS receivers found in most smartphones can easily provide high quality positioning information at any time. Even with its superb performance, GPS is prone to jamming and spoofing, and many platforms requiring accurate positioning information are in dire need of other navigation solutions to compensate in the event of an outage, be the cause hostile or natural. Indeed, there has been a large push to achieve an alternative navigation capability which ...


Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani 2020 Air Force Institute of Technology

Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani

Faculty Publications

Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS‐alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour‐long flights, but these flights required accurate magnetic maps which are not always available. Magnetic map availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially ...


Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak 2020 West Virginia University

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak

Graduate Theses, Dissertations, and Problem Reports

Practical decision makers are inherently limited by computational and memory resources as well as the time available in which to make decisions. To cope with these limitations, humans actively seek methods which limit their resource demands by exploiting structure within the environment and exploiting a coupling between their sensing and actuation to form heuristics for fast decision-making. To date, such behavior has not been replicated in artificial agents. This research explores how heuristics may be incorporated into the decision-making process to quickly make high-quality decisions through the analysis of a prominent case study: the outfielder problem. In the outfielder problem ...


Reliable Navigation For Suas In Complex Indoor Environments, Andrew J. Fabian 2020 Virginia Commonwealth University

Reliable Navigation For Suas In Complex Indoor Environments, Andrew J. Fabian

Theses and Dissertations

Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning.

The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used ...


Digital Commons powered by bepress