Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

481 Full-Text Articles 640 Authors 293598 Downloads 37 Institutions

All Articles in Aerodynamics and Fluid Mechanics

Faceted Search

481 full-text articles. Page 1 of 21.

Design And Validation Of Pressure Based Flow Rate Soft Sensor For Freeze-Drying, Pasita Pibulchinda, Tong Zhu, Vaibhav Kshirsagar, Alina A. Alexeenko 2017 Purdue University

Design And Validation Of Pressure Based Flow Rate Soft Sensor For Freeze-Drying, Pasita Pibulchinda, Tong Zhu, Vaibhav Kshirsagar, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lyophilization or freeze drying is a process of removing water by sublimation. It is commonly used to extend the shelf life of drugs in the pharmaceutical industry. Because the process is costly and time consuming, precise and efficient pressure, temperature control and drying time estimation are required. It is the goal of freeze-drying to run at maximum capacity while staying within the safe zone by carefully controlling the sublimation rate. Currently, real time estimation of sublimation rate is still challenging. The technique available called Tunable diode laser absorption spectroscopy (TDLAS) is invasive, and requires major modifications. The current study focuses ...


Experimental Data Analysis Of The Vortex Structures In The Wakes Of Flapping Wings, Kai Wang, Umesh Vaidya, Baskar Ganapathysubramanian, Hui Hu 2017 Iowa State University

Experimental Data Analysis Of The Vortex Structures In The Wakes Of Flapping Wings, Kai Wang, Umesh Vaidya, Baskar Ganapathysubramanian, Hui Hu

Umesh Vaidya

The objective of this paper is to compare the existing methods and develop novel approaches for the experimental data analysis of the unsteady aerodynamics of the flapping wing microaerial-vehicle. These methods are developed for the purpose of identification of the beneficial dynamics and for the development of reduced order models for control design. We first employ Proper Orthogonal Decomposition (POD) method for the data analysis of the PIV measurements in the wakes of piezoelectric flapping wings. The basic idea behind POD based data analysis method is to decompose the time series snapshots of PIV measurements into high energy, POD, modes ...


Experimental Data Analysis Of The Vortex Structures In The Wakes Of Flapping Wings, Kai Wang, Umesh Vaidya, Baskar Ganapathysubramanian, Hui Hu 2017 Iowa State University

Experimental Data Analysis Of The Vortex Structures In The Wakes Of Flapping Wings, Kai Wang, Umesh Vaidya, Baskar Ganapathysubramanian, Hui Hu

Baskar Ganapathysubramanian

The objective of this paper is to compare the existing methods and develop novel approaches for the experimental data analysis of the unsteady aerodynamics of the flapping wing microaerial-vehicle. These methods are developed for the purpose of identification of the beneficial dynamics and for the development of reduced order models for control design. We first employ Proper Orthogonal Decomposition (POD) method for the data analysis of the PIV measurements in the wakes of piezoelectric flapping wings. The basic idea behind POD based data analysis method is to decompose the time series snapshots of PIV measurements into high energy, POD, modes ...


Turbulent Combustion Of Polydisperse Evaporating Sprays With Droplet Crossing: Eulerian Modeling And Validation In The Infinite Knudsen Limit, S. de Chaisemartin, L. Freret, D. Kah, F. Laurent, Rodney O. Fox, J. Reveillon, M. Massot 2017 Ecole Centrale Paris

Turbulent Combustion Of Polydisperse Evaporating Sprays With Droplet Crossing: Eulerian Modeling And Validation In The Infinite Knudsen Limit, S. De Chaisemartin, L. Freret, D. Kah, F. Laurent, Rodney O. Fox, J. Reveillon, M. Massot

Rodney O. Fox

The accurate simulation of the dynamics of polydisperse evaporating sprays in unsteady gaseous flows with large-scale vortical structures is both a crucial issue for industrial applications and a challenge for modeling and scientific computing. The difficulties encountered by the usual Lagrangian approaches make the use of Eulerian models attractive, aiming at a lower cost and an easier coupling with the carrier gaseous phase. Among these models, the multi-fluid model allows for a detailed description of the polydispersity and size-velocity correlations for droplets of various sizes. The purpose of the present study is twofold. First, we extend the multi-fluid model in ...


Numerical Description Of Dilute Particle-Laden Flows By A Quadrature-Based Moment Method, N. Le Lostec, Rodney O. Fox, O. Simonin, P. Villedieu 2017 Office National d'Etudes et de Recherches Aerospatiales, France

Numerical Description Of Dilute Particle-Laden Flows By A Quadrature-Based Moment Method, N. Le Lostec, Rodney O. Fox, O. Simonin, P. Villedieu

Rodney O. Fox

The numerical simulation of gas-particle flows is divided into two families of methods. In Euler-Lagrange methods individual particle trajectories are computed, whereas in Euler-Euler methods particles are characterized by statistical descriptors. Lagrangian methods are very precise but their computational cost increases with instationarity and particle volume fraction. In Eulerian methods (also called moment methods) the particle-phase computational cost is comparable to that of the fluid phase but requires strong simplificaions. Existing Eulerian models consider unimodal or close-to-equilibrium particle velocity distributions and then fail when the actual distribution is far from equilibrium. Quadrature-based Eulerian methods introduce a new reconstruction of the ...


A Quadrature-Based Moment Closure For The Williams Spray Equation, O. Desjardins, Rodney O. Fox, P. Villedieu 2017 Iowa State University

A Quadrature-Based Moment Closure For The Williams Spray Equation, O. Desjardins, Rodney O. Fox, P. Villedieu

Rodney O. Fox

Sprays and other dispersed-phase systems can be described by a kinetic equation containing terms for spatial transport, acceleration, and particle processes (such as evaporation or collisions). In principle, the kinetic description is valid from the dilute (non-collisional) to the dense limit. However, its numerical solution in multi-dimensional systems is intractable due to the large number of independent variables. As an alternative, Lagrangian methods "discretize" the density function into "parcels" that are simulated using Monte-Carlo methods. While quite accurate, as in any statistical approach, Lagrangian methods require a relatively large number of parcels to control statistical noise, and thus are computationally ...


An Investigation Of Avian Wing Tip Vortex Generation Using A Biomimetic Approach, David Stewart Martin 2017 California Polytechnic State University, San Luis Obispo

An Investigation Of Avian Wing Tip Vortex Generation Using A Biomimetic Approach, David Stewart Martin

Master's Theses and Project Reports

An experimental study has been conducted to develop a process allowing the creation of biologically accurate aerodynamic test models mimicking the slotted primary feather geometry of the Brown Pelican (Pelecanus occidentalis). Preserved examples of both a full Brown Pelican wing and a single primary feather were 3D scanned and digitally reconstructed using a combination of MATLAB and CAD software. The final model was then 3D printed as a collection of smaller components using a LulzBot TAZ 6 printer and Taulman3D T-Glase PET filament. After using various surface finishing techniques to improve the finish of all 3D printed parts, an assembly ...


Leading Edge Boundary Layer Suction Device For The Cal Poly Rolling Road Wind Tunnel, Daniel C. Glover, Liam M. Madden, Robert J. Cabri 2017 California Polytechnic State University, San Luis Obispo

Leading Edge Boundary Layer Suction Device For The Cal Poly Rolling Road Wind Tunnel, Daniel C. Glover, Liam M. Madden, Robert J. Cabri

Mechanical Engineering

No abstract provided.


Aerodynamics And Shock Buffet Of A Transonic Airfoil In Ground Effect, Boshun Gao 2017 Washington University in St. Louis

Aerodynamics And Shock Buffet Of A Transonic Airfoil In Ground Effect, Boshun Gao

Engineering and Applied Science Theses & Dissertations

No abstract provided.


Uncertainty Quantification Of Turbulence Model Closure Coefficients On Openfoam And Fluent For Mildly Separated Flows, Ike Witte 2017 Washington University in St Louis

Uncertainty Quantification Of Turbulence Model Closure Coefficients On Openfoam And Fluent For Mildly Separated Flows, Ike Witte

Engineering and Applied Science Theses & Dissertations

In this thesis, detailed uncertainty quantification studies focusing on the closure coefficients of eddy-viscosity turbulence models for several flows using two CFD solvers have been performed. Three eddy viscosity turbulence models considered are: the one-equation Spalart-Allmaras (SA) model, the two-equation Shear Stress Transport (SST) k-ω model, and the one-equation Wray-Agarwal (WA) model. OpenFOAM and ANSYS Fluent are used as flow solvers. Uncertainty quantification analyses are performed for subsonic flow over a flat plate, subsonic flow over a backward-facing step, and transonic flow past an axisymmetric bump. In the case of flat plate, coefficients of pressure, lift, drag, and skin friction ...


Design And Computational Fluid Dynamics Analysis Of An Idealized Modern Wingsuit, Maria E. Ferguson 2017 Washington University in St Louis

Design And Computational Fluid Dynamics Analysis Of An Idealized Modern Wingsuit, Maria E. Ferguson

Engineering and Applied Science Theses & Dissertations

The aerodynamics of a modern wingsuit has been the subject of very few detailed scientific studies to date. The prevailing design process remains the dangerous “sew and fly” method, in which designs are tested when they are first flown. This study utilizes Computational Fluid Dynamics (CFD) tools to analyze the flow field and aerodynamics of an idealized wingsuit, which is designed using Computer-Aided Design (CAD) modeling. The 3D CAD software Autodesk Inventor is used to create the wingsuit model, which is designed with a Gottingen 228 airfoil cross-section and a relatively large planform of aspect ratio 1.3. The commercial ...


Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, NING DENG 2017 Washington University in St. Louis

Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng

Engineering and Applied Science Theses & Dissertations

The main focus of this thesis is on the simulation of flow past a three-dimensional wing-body configuration (DLR-F6) in ground effect; a complex 3D wing-body configuration in ground effect has never been analyzed in the aerodynamics literature to date. For the purpose of validation of the simulation approach, computations are performed for the DLR-F6 wing-body in unbounded flow and are compared with the experimental data. The commercial CFD solver ANSYS FLUENT is employed for computations. Compressible Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with Spalart-Allmaras (SA) and - Shear Stress Transport (SST) turbulence models are solved. The validated code is employed to ...


Literature Review: Biomimetic And Conventional Aircraft Wing Tips, Naseeb Ahmed Siddiqui, Waqar Asrar, Erwin Sulaeman 2017 International Islamic University - Malaysia

Literature Review: Biomimetic And Conventional Aircraft Wing Tips, Naseeb Ahmed Siddiqui, Waqar Asrar, Erwin Sulaeman

International Journal of Aviation, Aeronautics, and Aerospace

This paper is an attempt to summarize the effect of wing tip devices employed by birds, as well as aeronautical engineers in the past to improve the performance characteristics of aircraft. The focus is on reduction of the induced drag or drag due to lift also known as inviscid drag. This paper will provide an insight on both biomimetic and conventional wing tip approaches to reduce the induced drag. Prior analysis and experiments on the aerodynamics of airplane performance due to both these separate studies have been discussed. The needs of the industry and their past inventions have been described ...


Application Of Strand-Cartesian Interfaced Solver On Flows Around Various Geometries, Yushi Yanagita 2017 Utah State University

Application Of Strand-Cartesian Interfaced Solver On Flows Around Various Geometries, Yushi Yanagita

All Graduate Plan B and other Reports

This work examines the application of a high-order numerical method to strand-based grids to solve the Navier-Stokes equations. Coined "Flux Correction", this method eliminates error terms in the fluxes of traditional second-order finite volume Galerkin methods. Flux Correction is first examined for applications to the Reynolds-Averaged Navier-Stokes equations to compute turbulent flows on a strictly strand-based domain. Flow over three geometries are examined to demonstrate the method’s capabilities: a three-dimensional bump, an infinite wing, and a hemisphere-cylinder configuration. Comparison to results obtained from established codes show that the turbulent Flux Correction scheme accurately predicts flow properties such as pressure ...


Enceladus Sample Return Mission, Braxton Brakefield, Rekesh Ali, Andrew Bishop, Shelby Honaker, David Taylor 2017 University of Tennessee, Knoxville

Enceladus Sample Return Mission, Braxton Brakefield, Rekesh Ali, Andrew Bishop, Shelby Honaker, David Taylor

University of Tennessee Honors Thesis Projects

No abstract provided.


Actuator Disk Theory For Compressible Flow, Htet Htet Nwe Oo 2017 California Polytechnic State University, San Luis Obispo

Actuator Disk Theory For Compressible Flow, Htet Htet Nwe Oo

Master's Theses and Project Reports

Because compressibility effects arise in real applications of propellers and turbines, the Actuator Disk Theory or Froude’s Momentum Theory was established for compressible, subsonic flow using the three laws of conservation and isentropic thermodynamics. The compressible Actuator Disk Theory was established for the unducted (bare) and ducted cases in which the disk was treated as the only assembly within the flow stream in the bare case and enclosed by a duct having a constant cross-sectional area equal to the disk area in the ducted case. The primary motivation of the current thesis was to predict the ideal performance of ...


Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly 2017 University of Tennessee, Knoxville

Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly

Masters Theses

Engineers and pilots rely on mechanical flow angle vanes on air data probes to determine the angle of attack of the aircraft in flight. These probes, however, are costly, come with inherent measurement errors, affect the flight characteristics of the aircraft, and are potentially dangerous in envelope expansion flights. Advances in the accuracy, usability, and affordability of inertial navigation systems allow for angle of attack to be determined accurately without direct measurement of the airflow around the aircraft. Utilizing an algorithm developed from aircraft equations of motion, a post-flight data review is completed as the first step in proving the ...


A Numerical Study Of The Limiting Cases Of Cylinder-Induced Shock Wave/Boundary Layer Interactions, Stefen Albert Lindorfer 2017 University of Tennessee, Knoxville

A Numerical Study Of The Limiting Cases Of Cylinder-Induced Shock Wave/Boundary Layer Interactions, Stefen Albert Lindorfer

Masters Theses

One of the limiting factors in the design of supersonic and hypersonic vehicles remains the prediction and control of the high aerodynamic, thermodynamic, acoustic, and structural loads generated by a shock wave/boundary layer interaction (SWBLI or SBLI). In conjunction with an experimental campaign produced within the research group, a numerical study was performed using a semi-infinite cylinder to generate a SWBLI at Mach 1.88 with both laminar and turbulent boundary layers. The goals were not only to better understand the complex flow surrounding the cylinder-induced turbulent interaction, but also to establish the interaction bounds of the limiting cases ...


In-House Fabrication Of Temperature Sensitive Paint For Turbine Cooling Research, Mayur D. Patel, Mark A. Ricklick 2017 Embry-Riddle Aeronautical University

In-House Fabrication Of Temperature Sensitive Paint For Turbine Cooling Research, Mayur D. Patel, Mark A. Ricklick

Beyond: Undergraduate Research Journal

The Temperature Sensitive Paint (TSP) is a widely used method in measuring and visualizing flow separation and heat transfer. Compared to the cost and time consumption needed for methods such as pitot tubes, temperature sensitive paint is a cheaper alternative. Due to high usage in College of Engineering research projects, it was determined that in house fabrication of temperature sensitive paint would reduce time and cost limitations. For initial stages, literature research was performed to determine the recipe of intensity based TSP with luminophore and polymer binder that operated optimum at temperatures from 0-100°C. Europium III thenoyltrifluoroacetonate was determined ...


Boundary Element Solutions To Wave Scattering By Surface Irregularities On A Fluid-Solid Interface, S. Shenoy, Thomas J. Rudolphi, F. J. Rizzo 2017 Iowa State University

Boundary Element Solutions To Wave Scattering By Surface Irregularities On A Fluid-Solid Interface, S. Shenoy, Thomas J. Rudolphi, F. J. Rizzo

Thomas Rudolphi

The boundary element method is used to solve fluid-solid half-space problems with fluid-filled dimples and air bubbles on the solid surface. The problems, formulated in the Fourier (frequency) domain, are described by the fullspace three-dimensional acoustic and elastodynamic boundary integral equations (BIE), with pressure and displacement serving as primary variables. The techniques developed are general and may be with any kind of incident wave, however, plane waves are used in all numerical experiments. The equations governing the acoustic region are first converted mathematically to equations like those of an elastic region. The two regions are coupled and solved for the ...


Digital Commons powered by bepress