Open Access. Powered by Scholars. Published by Universities.®

Space Vehicles Commons

Open Access. Powered by Scholars. Published by Universities.®

429 Full-Text Articles 555 Authors 116,210 Downloads 36 Institutions

All Articles in Space Vehicles

Faceted Search

429 full-text articles. Page 1 of 20.

Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga 2019 University of Arizona

Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga

Space Traffic Management Conference

The exponential rise in small-satellites and CubeSats in Low Earth Orbit (LEO) poses important challenges for future space traffic management. At altitudes of 600 km and lower, aerodynamic drag accelerates de-orbiting of satellites. However, placement of satellites at higher altitudes required for constellations pose important challenges. The satellites will require on-board propulsion to lower their orbits to 600 km and let aerodynamic drag take-over. In this work we analyze solutions for de-orbiting satellites at altitudes of up to 3000 km. We consider a modular robotic de-orbit device that has stowed volume of a regular CubeSat. The de-orbit device would be ...


Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah 2019 The University of Texas at Austin

Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah

Space Traffic Management Conference

The necessity for standards-based ontologies for long-term sustainability of space operations and safety of increasing space flights has been well-established [6, 7]. Current ontologies, such as DARPA’s OrbitOutlook [5], are not publicly available, complicating efforts for their broad adoption. Most sensor data is siloed in proprietary databases [2] and provided only to authorized users, further complicating efforts to create a holistic view of resident space objects (RSOs) in order to enhance space situational awareness (SSA).

The ASTRIA project is developing an open data model with the goal of aggregating data about RSOs, parts, space weather, and governing policies in ...


Lasers For Communication And Coordination Control Of Spacecraft Swarms, Himangshu Kalita, Leonard Dean Vance, Vishnu Reddy, Jekan Thanga 2019 University of Arizona

Lasers For Communication And Coordination Control Of Spacecraft Swarms, Himangshu Kalita, Leonard Dean Vance, Vishnu Reddy, Jekan Thanga

Space Traffic Management Conference

Swarms of small spacecraft offer whole new capabilities in Earth observation, global positioning and communications compared to a large monolithic spacecraft. These small spacecraft can provide bigger apertures that increase gain in communication antennas, increase area coverage or effective resolution of distributed cameras and enable persistent observation of ground or space targets. However, there remain important challenges in operating large number of spacecrafts at once. Current methods would require a large number of ground operators monitor and actively control these spacecraft which poses challenges in terms of coordination and control which prevents the technology from scaled up in cost-effective manner ...


Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner 2019 Aerospace

Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner

Space Traffic Management Conference

Nanosats (and CubeSats, ‘Smallsats’, etc.) are of order 10 cm in size, and are at or near the limits of what can be tracked and characterized, using existing space surveillance assets. Additionally, given the CubeSat form-factor, they are often launched in large numbers (scores), and can be virtually identical. Thus are they difficult to track and to identify.

We have identified a number of technologies that future nanosat missions could employ that would enhance the trackability and/or identification of their satellites when on-orbit. Some of these technologies require active illumination of the satellite with electromagnetic energy, either in the ...


Human-In-The-Loop Landing Flare Flight Test Simulation Of The Spaceliner Orbiter, Frank Morlang 2019 DLR German Aerospace Center

Human-In-The-Loop Landing Flare Flight Test Simulation Of The Spaceliner Orbiter, Frank Morlang

Space Traffic Management Conference

Against the background that all future air traffic participants are requested to act as System Wide Information Management (SWIM) communicating sub-systems by the future Single European Sky Air Traffic Management Research (SESAR) SWIM 'Intranet for ATM' concept, facing the challenge of integration of space traffic in the current Air Traffic Management (ATM) needs SWIM compliance of future commercial space transportation (CST) vehicles having “landing like an aircraft at an airport” characteristics. In order to evaluate future spacecraft cockpit procedures in a transition context from Aircraft Access to SWIM (AAtS) to Spacecraft Access to SWIM in a network wide airspace management ...


A Statistical Approach For Commercial Space Vehicle Integration Into The National Airspace System, Christopher Hays, Daniel Chu, Pedro Llanos 2019 Embry-Riddle Aeronautical University

A Statistical Approach For Commercial Space Vehicle Integration Into The National Airspace System, Christopher Hays, Daniel Chu, Pedro Llanos

Space Traffic Management Conference

This paper explores commercial space vehicle (CSV) suborbital flight trajectories in the temporal and spatial domains for CSV integration into the National Airspace System. The research data was collected via the Suborbital Space Flight Simulator (SSFS) housed in the College of Aviation at Embry-Riddle Aeronautical University - Daytona Beach campus, and analyzed using an original MATLAB data analytics tool. This study primarily focuses on statistical trends observed in previously simulated flights supported by three Project PoSSUM (Polar Suborbital Science in the Upper Mesosphere) campaigns comprised of 34 flights and 19 control flights, and to identify relevant milestones in the CSV flight ...


Enhancing Suborbital Science Through Better Understanding Of Wind Effects, Pedro Llanos, Diane Howard 2019 Embry-Riddle Aeronautical University - Daytona Beach

Enhancing Suborbital Science Through Better Understanding Of Wind Effects, Pedro Llanos, Diane Howard

Space Traffic Management Conference

This paper highlights the importance of understanding some key factors, such as winds effects, trajectory and vehicle parameters variations in order to streamline the space vehicle operations and enhance science in the upper mesosphere at about 85 km. Understanding these effects is crucial to refine current space operations and establish more robust procedures. These procedures will involve training new space operators to conduct and coordinate space operations in class E above FL600 airspace within the Air Traffic Organization (ATO).

Space vehicles such as Space Ship Two can spend up to 6 minutes in class E airspace above FL600 after launch ...


Design Of An Attitude Control System For A Spacecraft With Propellant Slosh Dynamics, Nolan Coulter 2018 Embry-Riddle Aeronautical University

Design Of An Attitude Control System For A Spacecraft With Propellant Slosh Dynamics, Nolan Coulter

Dissertations and Theses

The presence of propellant slosh dynamics in a spacecraft system during a maneuver leads to attitude control system (ACS) performance degradation resulting in attitude tracking errors and instability. As spacecraft missions become more complex and involve longer durations, a substantial propellant mass is required to achieve the mission objectives and perform orbital maneuvers. When the propellant tanks are only partially filled, the liquid fuel moves inside the tanks with translational and rotational accelerations generating the slosh dynamics. This research effort performs a comparative study with different optimal control techniques and a novel application of a model reference artificial immune system ...


Design And Implementation Of Intelligent Guidance Algorithms For Uav Mission Protection, Karina Rivera 2018 Embry-Riddle Aeronautical University

Design And Implementation Of Intelligent Guidance Algorithms For Uav Mission Protection, Karina Rivera

Dissertations and Theses

In recent years, the interest of investigating intelligent systems for Unmanned Aerial Vehicles (UAVs) have increased in popularity due to their large range of capabilities such as on-line obstacle avoidance, autonomy, search and rescue, fast prototyping and integration in the National Air Space (NAS). Many research efforts currently focus on system robustness against uncertainties but do not consider the probability of readjusting tasks based on the remaining resources to successfully complete the mission. In this thesis, an intelligent algorithm approach is proposed along with decision-making capabilities to enhance UAVs post-failure performance. This intelligent algorithm integrates a set of path planning ...


Enhancing Your Intelligence Agency Information Resource Iq: Pt. 4: National Geospatial Intelligence Agency (Ngia), National Intelligence University (Niu), And National Reconnaissance Office (Nro), Bert Chapman 2018 Purdue University

Enhancing Your Intelligence Agency Information Resource Iq: Pt. 4: National Geospatial Intelligence Agency (Ngia), National Intelligence University (Niu), And National Reconnaissance Office (Nro), Bert Chapman

Libraries Faculty and Staff Presentations

Webinar presentation on publicly accessible information resources produced by the U.S. National Geospatial Intelligence Agency (NGIA), National Intelligence University (NIU), and National Reconnaissance Office. Places significant emphasis on missions of these agencies, their historical accomplishments, coverage of their educational activity, and information on the technologies they have used and are currently using to fulfill their institutional objectives.


Variable Fidelity Studies In Wake Vortex Evolution, Safety, And Control, Petr Kazarin 2018 Embry-Riddle Aeronautical University

Variable Fidelity Studies In Wake Vortex Evolution, Safety, And Control, Petr Kazarin

Dissertations and Theses

The purpose of this research is to develop a variable-fidelity approach for addressing the safety of unmanned aerial system (UAS) operations in the national aerospace system (NAS). This task is implemented on the basis of safety investigation toolkit for analysis and reporting wake vortex safety system (SITAR WVSS) code, which is a dynamic low-fidelity model addressing generation, evolution, and interaction of the leader-aircraft wake vortex with the follower-aircraft lifting surfaces.

The first part of the dissertation deals with the generation, evolution, and interaction of the wake vortices produced by an aircraft. In particular, it presents the results of the vortex ...


Direct Adaptive Control For A Trajectory Tracking Uav, Nirmit Prabhakar 2018 Embry-Riddle Aeronautical University - Daytona Beach

Direct Adaptive Control For A Trajectory Tracking Uav, Nirmit Prabhakar

Dissertations and Theses

This research focuses on the theoretical development and analysis of a direct adaptive control algorithm to enable a fixed-wing UAV to track reference trajectories while in the presence of persistent external disturbances. A typical application of this work is autonomous flight through urban environments, where reference trajectories would be provided by a path planning algorithm and the vehicle would be subjected to significant wind gust disturbances. Full 6-DOF nonlinear and linear UAV simulation models are developed and used to study the performance of the direct adaptive control system for various scenarios. A stability proof is developed to prove convergence of ...


Design Of A Thrust Stand For Low Power Electric Propulsion, John Norton 2018 Embry-Riddle Aeronautical University

Design Of A Thrust Stand For Low Power Electric Propulsion, John Norton

Undergraduate Research Symposium - Prescott

Electric propulsion (EP) has been gaining popularity due to the high efficiencies and specific impulse. These thrusters all follow the same general idea of converting stored electrical potential energy to kinetic energy for the craft; typically, this is accomplished by the acceleration of gas particles through three main methods, electrothermal, electromagnetic, and/or electrostatic. The specific impulse is the change of momentum per unit of propellant expended. While chemical propulsion produces a high change in momentum, they use much more propellant mass than an electric thruster. EP devices will typically produce very low thrust, which makes it difficult to measure ...


Telemetry Subsystem With Higher Access Duration For Leo Satellites, Jose L. Garcia 2018 Morehead State University

Telemetry Subsystem With Higher Access Duration For Leo Satellites, Jose L. Garcia

Morehead State Theses and Dissertations

A thesis presented to the faculty of the College of Science at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Jose L. Garcia on September 10, 2018.


Techedsat 7 And 8-Nasa Missions For Earth Observation, Andrew Pham 2018 NASA Ames Research Center

Techedsat 7 And 8-Nasa Missions For Earth Observation, Andrew Pham

STAR (STEM Teacher and Researcher) Presentations

Big results can come from small satellites, and Technology Educational Satellite 8 or TES-8 is the latest small satellite in the TechEdSat series from NASA Ames Research Center. TechEdSat is a collaborative program, in which advanced university students have a chance to work directly with researchers on NASA Space Projects. Thanks to the assistance of students from several universities around the country every year, TechEdSat has helped NASA develop Nano-satellite technologies and evaluate new ideas for future spacecraft. TES-8 is the eighth satellite of the continuing TechEdSat series. On December 01, 2018 TES-8 followed a Commercial Resupply Service mission to ...


The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy 2018 University of Maine

The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy

Electronic Theses and Dissertations

Any manned space mission must provide breathable air to its crew. For this reason, air leaks in spacecraft pose a danger to the mission and any astronauts on board. The purpose of this work is twofold: the first is to address the issue of air pressure loss from leaks in spacecraft. Air leaks present a danger to spacecraft crew, and so a method of finding air leaks when they occur is needed. Most leak detection systems localize the leak in some way. Instead, we address the identification of air leaks in a pressurized space module, we aim to determine the ...


Space Architecture Assessment Using System-Of-Systems Methodologies, Liam Durbin, Cesare Guariniello, Daniel DeLaurentis 2018 Purdue University

Space Architecture Assessment Using System-Of-Systems Methodologies, Liam Durbin, Cesare Guariniello, Daniel Delaurentis

The Summer Undergraduate Research Fellowship (SURF) Symposium

As technologies in the space exploration community are further developed, mission complexity and the associated risks have become greater. Dozens of complicated system interactions may result in unexpected, potentially dangerous emergent behaviors. Early efforts are underway by NASA to map potential system architectures (collections of systems which fulfill design requirements) for future human space exploration missions. However, current mission complexity requires the determination of emergent behaviors, as well as time requirements, and safety levels of complicated space exploration architectures, which current analysis methods in use cannot address. To that end, a newer technique has been developed—System Operability Dependency Analysis ...


Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin 2018 Purdue University

Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Stationary Hall thrusters are electric, moderate-specific impulse propulsion systems developed in Russia. These devices manipulate electric and magnetic fields to expel ionized gas (plasma) components, resulting in thrust. The success of Hall-effect engines in USSR satellite-transfer missions quickly sparked western interest in the design. Extensive government and academic study commenced shortly after the dissolution of the Soviet Union, when the technology was made available to the United States. The common SPT-100 model was the primary subject of such studies. Unfortunately, limited literature exists for rare and uncommon Hall thruster models. The T-100-3 stationary plasma thruster suffers from this gap; few ...


Aerothermodynamic Analysis Of A Mars Sample Return Earth-Entry Vehicle, Daniel A. Boyd 2018 Old Dominion University

Aerothermodynamic Analysis Of A Mars Sample Return Earth-Entry Vehicle, Daniel A. Boyd

Mechanical & Aerospace Engineering Theses & Dissertations

Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery. Vehicles returning on a Mars-Earth trajectory will attain velocities exceeding any that have been experienced by prior space exploration missions, with velocities approaching 14 km/s. Velocities as high as these will encounter significant heating during atmospheric re-entry to Earth.

The purpose of this study has been to systematically investigate the aerothermodynamic challenges that will result from a Mars sample return, Earth-entry vehicle design. The goal was to enable efficient estimation of maximum ...


Utilizing Permanent On-Board Water Storage For Efficient Deep Space Radiation Shielding, Nathan Ryan Gehrke 2018 California Polytechnic State University, San Luis Obispo

Utilizing Permanent On-Board Water Storage For Efficient Deep Space Radiation Shielding, Nathan Ryan Gehrke

Master's Theses and Project Reports

As space technologies continue to develop rapidly, there is a common desire to launch astronauts beyond the ISS to return to the Moon and put human footsteps on Mars. One of the largest hurdles that still needs to be addressed is the protection of astronauts from the radiation environment seen in deep space. The most effective way to defend against radiation is increasing the thickness of the shield, however this is limited by strict mass requirements. In order to increase the thickness of the shield, it is beneficial to make mission critical items double as shielding material.

The human rated ...


Digital Commons powered by bepress