Open Access. Powered by Scholars. Published by Universities.®

Propulsion and Power Commons

Open Access. Powered by Scholars. Published by Universities.®

360 Full-Text Articles 564 Authors 245,502 Downloads 39 Institutions

All Articles in Propulsion and Power

Faceted Search

360 full-text articles. Page 1 of 15.

Studies Of Oval Tube And Fin Heat Exchangers, Phillip Nielsen 2020 Embry-Riddle Aeronautical University

Studies Of Oval Tube And Fin Heat Exchangers, Phillip Nielsen

Undergraduate Student Works

Heating Ventilation and air-conditioning (HVAC) is a system which changes the temperature of the surroundings for the purposes of cooling or heating. This system requires energy to maintain a temperature difference from the outside temperature. Optimizing the flow over the evaporator coils is one way to increase the cooling efficiency. This will reduce the power required to have a sustainable system. Optimizing the flow to increase the energy transfer between the fins and the incoming air could result in a greater Coefficient of Performance (COP). This will be achieved by changing the geometry of the tubes for greater interaction with ...


Zenith Propulsion, Bryce Smoldon, Matthew Boban, Maxwell Kauker, Jonathan Noble, Stefan Johnson, Andrew Lucka, Nicholas Wright 2020 Embry-Riddle Aeronautical University

Zenith Propulsion, Bryce Smoldon, Matthew Boban, Maxwell Kauker, Jonathan Noble, Stefan Johnson, Andrew Lucka, Nicholas Wright

Undergraduate Student Works

Launch Vehicle Design for the FAR-Mars Competition The Zenith Propulsion team took on the challenge put forth by the Friends of Amateur Rocketry (FAR), to build and launch a rocket propelled by a liquid rocket engine. In 2018-2019, a capstone team called Tiber Designs successfully designed and tested a 1,000 lbf-thrust rocket engine, named Janus, that uses liquid oxygen and jet-A (aviationgrade kerosene) as propellants. Zenith Propulsion would design a vehicle – 21 ft long, 6 in diameter, 170 lbm loaded – that uses the Janus rocket engine to fly to a target altitude of 30,000 ft above ground level ...


Arizona Hyperloop: The Fifth Mode Of Transportation, Eleanor Pahl, Matthieu Rada 2020 Embry-Riddle Aeronautical University

Arizona Hyperloop: The Fifth Mode Of Transportation, Eleanor Pahl, Matthieu Rada

Discovery Day - Prescott

Arizona Hyperloop is a coalition between Embry-Riddle Aeronautical University and Arizona State University students competing in Elon Musk’s annual SpaceX Hyperloop Pod Competition. Hyperloop is the proposed “Fifth Mode of Transportation” - coined “a cross between a Concorde, a rail gun, and an air hockey table.” A hyperloop pod levitates and travels at nearly the speed of sound inside a vacuum tube, which eliminates air resistance. Musk hosts the annual competition to university students to encourage the evolution of urban transportation. The goal is to design, build, and race the fastest prototype pod at SpaceX’s mile-long test track in ...


Sae Aero West Heavy Lift Competition Team - Eaglenautics, Anthony Pirone, Evan Stuart, Jessica Millard, Nathaniel Scott 2020 Embry-Riddle Aeronautical University

Sae Aero West Heavy Lift Competition Team - Eaglenautics, Anthony Pirone, Evan Stuart, Jessica Millard, Nathaniel Scott

Discovery Day - Prescott

ERAU’s SAE Aero Design West Competition team encourages students of all majors who have an interest in the design of heavy-lift cargo and passenger aircraft to design, build, and fly a large RC aircraft to meet a new set of regulations each competition year. Since the team, Eaglenautics, was founded in 2017 it has successfully been to competition once in April 2019 in California. The team’s aircraft flew 4 out of 5 flight rounds, passed all technical inspections, and is now on display in ERAU’s Aero-Fab in the AXFAB. The 2020 competition requirements are unique in that ...


Launch Vehicle Design For The Far-Mars Competition, Matthew Boban, Bryce Smoldon, Jonathan Noble, Stefan Johnson, Maxwell Kauker, Nicholas Wright, Andrew Lucka 2020 Embry-Riddle Aeronautical University

Launch Vehicle Design For The Far-Mars Competition, Matthew Boban, Bryce Smoldon, Jonathan Noble, Stefan Johnson, Maxwell Kauker, Nicholas Wright, Andrew Lucka

Discovery Day - Prescott

Zenith Propulsion is constructing a launch vehicle, named Altair, to compete in a competition hosted by the Friends of Amateur Rocketry (FAR) and the Mars Society. The objective for Zenith Propulsion is to design, build and launch Altair to a qualifying altitude of 30,000 feet in the FAR-Mars competition. Altair will utilize a rocket engine that has been in development at Embry-Riddle Aeronautical University’s Prescott campus since late 2018. This engine, named Janus, uses liquid oxygen and Jet-A and is designed to deliver 1000 lbf of thrust. Altair will be launched from the FAR launch site, in Mojave ...


Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan 2020 Air Force Institute of Technology

Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan

Theses and Dissertations

Radial Rotating Detonation Engines (RRDE) have provided an opportunity for use of a pressure-gain combustor in a more compact form compared to an axial RDE. A successfully tested RRDE has operated over a wide range of test conditions and produced detonation modes with one, two, and three waves. The presence of multiple waves located the detonation waves to the outer radius, while one wave modes operated closer to the inner radius. Locating the detonation wave closer to the inner diameter resulted in less time for combustion prior to the radial turbine. Subsequently, this tended to decrease efficiency. To attempt to ...


Development Of A Small Scale Rotating Detonation Engine, Joseph R. Dechert 2020 Air Force Institute of Technology

Development Of A Small Scale Rotating Detonation Engine, Joseph R. Dechert

Theses and Dissertations

The Rotating Detonation Engine (RDE) has been researched extensively in recent years, but the minimum size limits of an RDE have not been well investigated. The goal of this research was to build an RDE small enough to produce a detonation frequency above 20 kHz with a single detonation wave while also reducing the engine's mass ow rate. An engine with these design characteristics would reduce hazards associated with previous RDE testing. This research objective resulted in the design of an RDE with an outer diameter sized at 28 mm using ethylene and nitrous oxide as a fuel and ...


Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny 2020 Air Force Institute of Technology

Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny

Theses and Dissertations

Ultra Compact Combustors are a novel approach to modern gas turbine combustor designs that look to reduce the overall combustor length and weight. A previous study integrated an Ultra Compact Combustor into a JetCat P90 RXi turbine engine and achieved self-sustained operation with a length savings of 33% relative to the stock combustor. However, that combustor could not operate across the full stock engine performance range due to flameout at increased mass ow rates as reactions were pushed out of the primary zone. To ensure reactions stayed in the primary zone, a new design with a larger combustor volume was ...


Rocket Motor Nozzle, Corey Hillegass 2020 The University of Akron

Rocket Motor Nozzle, Corey Hillegass

Williams Honors College, Honors Research Projects

For this honors research and senior design project, the authors will research, analyze, and manufacture a rocket motor nozzle for the Akronauts rocket design team. This research and design project will improve how the rocket design team will decide and manufacture nozzles going forward. The impact of this improvement allows the rocket design team to take steps toward being self-sustaining by manufacturing student designed parts as opposed to commercially bought parts. This will not only be successful in increasing student impact on future designs, but also provides a technical challenge for the authors and will present as an impressive feat ...


Supersonic Propulsion: Inlet Shock Wave/Boundary Layer Interaction In A Diffuser, Lucas Fulop, Ian Henry, Jordan Ruffner, Anthony McMullen 2020 The University of Akron

Supersonic Propulsion: Inlet Shock Wave/Boundary Layer Interaction In A Diffuser, Lucas Fulop, Ian Henry, Jordan Ruffner, Anthony Mcmullen

Williams Honors College, Honors Research Projects

Using a finite-volume approach and ANSYS/FLUENT, supersonic flow over a 2-D ramp of varying angles is modeled. The computational results from this model will be used to further explore the design of supersonic diffusers used on military aircraft. Using grid capturing features and inflation layers, shockwave and boundary layer interactions will be observed as well as wave-associated pressure changes in supersonic turbulent flow. The Spalart-Allmaras single-equation model of turbulent flow will be used in all simulations to more accurately represent the phenomena that occur in such high-speed environments. The size of upstream zones and recirculation zones will be obtained ...


Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel 2020 West Virginia University

Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel

Graduate Theses, Dissertations, and Problem Reports

Increasing demands in the next-generation portable power-generation devices such as unmanned aerial vehicles (UAV), microsatellite thrusters, micro-chemical reactors and sensors calls for fuels with high specific energy and low emissions to meet the current demand of green energy. Fuel-lean synthesis gas (syngas) meets both these requirements exhibiting a promising route to a clean and green environment. Thus, it is of critical importance to characterize syngas combustion and understand its properties in the micro-combustion industry. In addition to complicated flame dynamics in microscale systems, varying the syngas-fuel mixture composition as well as the boundary conditions and geometry of a combustor significantly ...


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles 2019 California Polytechnic State University, San Luis Obispo

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses and Project Reports

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient ...


Validation Of Rhocentralfoam For Engineering Applications Of Under-Expanded Impinging Free Jets, Peter Nielsen 2019 The University of Western Ontario

Validation Of Rhocentralfoam For Engineering Applications Of Under-Expanded Impinging Free Jets, Peter Nielsen

Electronic Thesis and Dissertation Repository

A numerical validation study of under-expanded impinging jet is conducted using OpenFOAM, an open-source computational fluid dynamics (CFD) library. RhoCentralFoam, a density based, compressible flow solver with a two-equation shear stress transport (SST) turbulence model is used on an axisymmetric model to reduce the computation cost. Major features of the flow were compared to an experimental study by Henderson et al., with a nozzle pressure ratio (NPR) of 4.0 and nozzle to plate spacing between 1.65-4.16. Of the features measured, the Mach diamond spacing, super-sonic core, and shear layer are all accurately predicted, while the recirculation bubble ...


Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman 2019 California Polytechnic State University, San Luis Obispo

Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman

Master's Theses and Project Reports

In order to accurately conduct the preliminary and detailed design of solar powered Unmanned Aerial Systems (UAS), it is necessary to have a thorough understanding of the systems involved. In particular, it is desirable to have mathematical models and analysis tools describing the energy income and expenditure of the vehicle. Solar energy income models may include available solar irradiance, photovoltaic array power output, and maximum power point tracker efficiency. Energy expenditure models include battery charging and discharging characteristics, propulsion system efficiency, and aerodynamic efficiency. In this thesis, a series of mathematical models were developed that characterize the performance of these ...


Computational Finite Element Analysis Of Adaptive Gas Turbine Stator-Rotor Flow Interactions For Future Vertical Lift Propulsion, Nikita Kozak, Luis Bravo, Muthuvel Murugan, Anindya Ghoshal, Yu Yu Khine, Yuri Bazilevs, Ming-Chen Hsu 2019 Iowa State University

Computational Finite Element Analysis Of Adaptive Gas Turbine Stator-Rotor Flow Interactions For Future Vertical Lift Propulsion, Nikita Kozak, Luis Bravo, Muthuvel Murugan, Anindya Ghoshal, Yu Yu Khine, Yuri Bazilevs, Ming-Chen Hsu

Mechanical Engineering Conference Presentations, Papers, and Proceedings

The objective of this work is to computationally investigate the impact of an incident-tolerant rotor blade concept on gas-turbine engine performance under off-design conditions. Currently, gas-turbine engines are designed to operate at a single condition with nearly fixed rotor speeds. Operation at off-design conditions, such as during hover flight or during takeoff, causes the turbine blade flow to excessively separate introducing performance degradations, excessive noise, and critical loss of operability. To address these issues, the benefits of using an incidence-tolerant rotor blade concept is explored based on a novel concept that articulates the rotating turbine blade synchronously with the stator ...


Keeping Your Library Relevant For Your Users- Engine Parts Petting Zoo, gabriele hysong 2019 Purdue University

Keeping Your Library Relevant For Your Users- Engine Parts Petting Zoo, Gabriele Hysong

Midwest Business Librarian Summit (MBLS)

As corporate libraries are downsized or even closed how do information professionals keep their libraries relevant?


Design Principles And Preliminary Testing Of A Micropropulsion Electrospray Thruster Research Platform, Will Alan McGehee 2019 California Polytechnic State University, San Luis Obispo

Design Principles And Preliminary Testing Of A Micropropulsion Electrospray Thruster Research Platform, Will Alan Mcgehee

Master's Theses and Project Reports

The need for micropropulsion solutions for spacecraft has been steadily increasing as scientific payloads require higher accuracy maneuvers and as the use of small form-factor spacecraft such as CubeSats becomes more common. Of the technologies used for this purpose, electrospray thrusters offer performance that make them an ideal choice. Electrosprays offer high accuracy impulse bits at low power and high efficiency, and have low volume requirements. Design choice reasoning and preliminary testing results are presented for two electrospray thruster designs. The first thruster, named the Demonstration thruster, is operated in atmospheric conditions and serves as a highly visible example of ...


Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo 2019 University of Illinois

Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. In order to determine ...


An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons 2019 California Polytechnic State University, San Luis Obispo

An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons

Physics

The Electromagnetic Drive (EMDrive) is a propellant-less engine concept hypothesized by aero- space engineer Roger Shawyer. Shawyer’s proposed thruster technology is grounded on the theory of electromagnetic resonant behavior exhibited by a radiofrequency cavity, though the source of any generated thrust is undetermined by current physical laws. NASA Eagleworks Laboratories at John- son Space Center conducted a vacuum test campaign to investigate previously reported anomalous thrust capabilities of such a closed radiofrequency cavity, using a low-thrust torsion pendulum. The team published positive, although small-scaled thrust results in 2017. Following NASA Eagleworks breakthrough result and operating under the assumption that ...


A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde 2019 California Polytechnic State University, San Luis Obispo

A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde

Master's Theses and Project Reports

Powering spacecraft with electric propulsion is becoming more common, especially in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is important to have robust analysis and modeling tools of electric propulsion engines, particularly of the plasma plume. The Navier-Stokes equations used in classic continuum computational fluid dynamics do not apply to the rarefied plasma, and therefore another method must be used to model the flow. A good solution is to use the DSMC method, which uses a combination of particle modeling and statistical methods for modeling the simulated molecules. A DSMC simulation known as SINATRA has been ...


Digital Commons powered by bepress