Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

760 Full-Text Articles 1,716 Authors 105,083 Downloads 67 Institutions

All Articles in Plasma and Beam Physics

Faceted Search

760 full-text articles. Page 8 of 24.

Design And Fabrication Of An Electrical Breakdown Facility, Prit Chovatiya, Animesh Sharma, Alexey Shashurin 2017 Purdue University

Design And Fabrication Of An Electrical Breakdown Facility, Prit Chovatiya, Animesh Sharma, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Usage of traditional experimental instrumentation has not kept up with the rate of advancement in the modern educational material. Teaching aids used in academia have to be updated to ensure effective understanding of content among the students. The use of outdated vacuum chambers as visual aids in plasma physics classrooms have proven to be ineffective for the students and teachers, due to limited viewing ports on the metallic walls of the vacuum chamber for viewing the plasma discharge phenomenon. It is important to address this challenge, which invigorates the need for the use of a transparent vacuum chamber as a ...


The Mechanism Of Plasma Plume Termination For Pulse Excited Plasmas In A Quartz Tube, Mingzhe Rong, Wenjie Xia, Xiaohua Wang, Zhijie Liu, Dingxin Liu, Zhihu Liang, Xiaoning Zhang, Michael G. Kong 2017 Old Dominion University

The Mechanism Of Plasma Plume Termination For Pulse Excited Plasmas In A Quartz Tube, Mingzhe Rong, Wenjie Xia, Xiaohua Wang, Zhijie Liu, Dingxin Liu, Zhihu Liang, Xiaoning Zhang, Michael G. Kong

Bioelectrics Publications

Although the formation and propagation of plasma plume for atmospheric pressure plasmas have been intensively studied, how does the plasma plume terminate is still little known. In this letter, helium plasma plumes are generated in a long quartz tube by pulsed voltages and a constant gas flow. The voltages have a variable pulse width (PW) from 0.5 μs to 200 μs. It is found that the plasma plume terminates right after the falling edge of each voltage pulse when PW < 20 μs, whereas it terminates before the falling edge. When PW is larger than 30 μs ...


Target-Based Coherent Beam Combining Of An Optical Phased Array Fed By A Broadband Laser Source, Milo W. Hyde IV, Jack E. McCrae, Glenn A. Tyler 2017 Air Force Institute of Technology

Target-Based Coherent Beam Combining Of An Optical Phased Array Fed By A Broadband Laser Source, Milo W. Hyde Iv, Jack E. Mccrae, Glenn A. Tyler

Faculty Publications

The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.


Kinematical Vortices In Double Photoionization Of Helium By Attosecond Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace 2017 University of Nebraska-Lincoln

Kinematical Vortices In Double Photoionization Of Helium By Attosecond Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace

Anthony F. Starace Publications

Two-armed helical vortex structures are predicted in the two-electron momentum distributions produced in double photoionization (DPI) of the He atom by a pair of time-delayed elliptically polarized attosecond pulses with opposite helicities. These predictions are based upon both a first-order perturbation theory analysis and numerical solutions of the two-electron, time-dependent Schrödinger equation in six spatial dimensions. The helical vortex structures originate from Ramsey interference of a pair of ionized two-electron wave packets, each having a total angular momentum of unity, and appear in the sixfold differential DPI probability distribution for any energy partitioning between the two electrons. The vortex structures ...


Microdischarges Utilized In Portable Gas Sensing And Their Atmospheric Contaminants, Colin H. Sillerud 2017 University of New Mexico

Microdischarges Utilized In Portable Gas Sensing And Their Atmospheric Contaminants, Colin H. Sillerud

Chemical and Biological Engineering ETDs

Portable applications of microdischarges such as the chemical detection, remediation of gaseous wastes, or the destruction of volatile organic compounds will mandate operation in the presence of contaminant species. This work examines the temporal evolution of microdischarge optical and ultraviolet emissions during pulsed operation by experimental methods. By varying the pulse length of a microdischarge initiated in a 4-hole silicon microcavity array operating in a 655 Torr ambient primarily composed of Ne, we were able to measure the emission growth rates for different contaminant species native to the discharge environment as a function of pulse length. It was found that ...


Instrument Design Optimization With Computational Methods, Michael H. Moore 2017 Old Dominion University

Instrument Design Optimization With Computational Methods, Michael H. Moore

Physics Theses & Dissertations

Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density fluctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High ...


Nanoplasmonic Phenomena At Electronic Boundaries In Graphene, Zhe Fei, Guang-Xin Ni, Bor-Yuan Jiang, Michael M. Fogler, D. N. Basov 2017 Iowa State University and Ames Laboratory

Nanoplasmonic Phenomena At Electronic Boundaries In Graphene, Zhe Fei, Guang-Xin Ni, Bor-Yuan Jiang, Michael M. Fogler, D. N. Basov

Ames Laboratory Accepted Manuscripts

We review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moiré patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlying physics ...


Improvements For The T0c+ Geometry Of The Fast Interaction Trigger (Fit) Upgrade To Alice At The Cern Lhc, Noah Miller 2017 California Polytechnic State University, San Luis Obispo

Improvements For The T0c+ Geometry Of The Fast Interaction Trigger (Fit) Upgrade To Alice At The Cern Lhc, Noah Miller

Physics

The purpose of the ALICE experiment at CERN is to investigate the properties of the strongly interacting quark-gluon plasma formed in the high-energy collisions of lead nuclei in the CERN Large Hadron Collider. ALICE has been collecting data since 2009. The upcoming upgrade of the CERN LHC injectors during 2019-20 will boost the luminosity and the collision rate beyond the design parameters for several of the key ALICE detectors including the forward trigger detectors. The new Fast Interaction Trigger (FIT) will enable ALICE to discriminate beam-beam interactions with a 99% efficiency for the collisions generated by the LHC at a ...


Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah DeVyldere 2017 Linfield College

Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere

Senior Theses

It is possible to produce electron beams with non-zero orbital angular momentum. Such beams, known as electron vortex beams, are theoretically able to transfer their orbital angular momenta to matter, causing the matter to rotate. Nanoparticles in an aqueous solution were observed with an electron vortex beam to detect the transfer of orbital angular momentum in a low-friction environment. Observing the transfer of orbital angular momentum to particles in solution is difficult due to the necessity of imaging the particles through a liquid and the random movement of particles in the solution. Thus, orbital angular momentum transfer to matter could ...


Discontinuities In The Electromagnetic Fields Of Vortex Beams In The Complex Source-Sink Model, Andrew Vikartofsky, Liang-Wen Pi, Anthony F. Starace 2017 University of Nebraska - Lincoln

Discontinuities In The Electromagnetic Fields Of Vortex Beams In The Complex Source-Sink Model, Andrew Vikartofsky, Liang-Wen Pi, Anthony F. Starace

Anthony F. Starace Publications

An analytical discontinuity is reported in what was thought to be the discontinuity-free exact nonparaxial vortex beam phasor obtained within the complex source-sink model. This discontinuity appears for all odd values of the orbital angular momentum mode. Such discontinuities in the phasor lead to nonphysical discontinuities in the real electromagnetic field components. We identify the source of the discontinuities, and provide graphical evidence of the discontinuous real electric fields for the first and third orbital angular momentum modes. A simple means of avoiding these discontinuities is presented.


Simulation Of A Crossed-Field Amplifier Using A Modulated Distributed Cathode, Marcus Pearlman 2017 Boise State University

Simulation Of A Crossed-Field Amplifier Using A Modulated Distributed Cathode, Marcus Pearlman

Boise State University Theses and Dissertations

Current crossed-field amplifiers (CFAs) use a uniformly distributed electron beam, and in this work, the effects of using a spatially and temporally controlled electron source are simulated and studied. Spatial and temporal modulation of the electron source in other microwave vacuum electron devices have shown an increase in gain and efficiency over a continuous current source, and it is expected that similar progress will be made with CFAs. Experimentally, for accurate control over the electron emission profile, integration of gated field emitter arrays (GFEAs) as the distributed electron source in a crossed-field amplifier (CFA) is proposed.

Two linear format, 600 ...


Aluminum Multicharged Ion Generation From Femtosecond Laser Plasma, Md. Haider A. Shaim, Frederick Guy Wilson, Hani E. Elsayed-Ali 2017 Old Dominion University

Aluminum Multicharged Ion Generation From Femtosecond Laser Plasma, Md. Haider A. Shaim, Frederick Guy Wilson, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Aluminum multicharged ion generation from femtosecond laser ablation is studied. A Ti:sapphire laser (wavelength 800 nm, pulse width ∼100 fs, and maximum laser fluence of 7.6 J/cm2) is used. Ion yield and energy distribution of each charge state are measured. A linear relationship between the ion charge state and the equivalent acceleration energy of the individual ion species is observed and is attributed to the presence of an electric field within the plasma-vacuum boundary that accelerates the ions. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. For Al1+ and Al2+, the ion energy ...


Electromagnetic Design Of A Superconducting Twin Axis Cavity, S. U. De Silva, H. Park, J. R. Delayen, F. Marhauser, A. Hutton 2017 Old Dominion University

Electromagnetic Design Of A Superconducting Twin Axis Cavity, S. U. De Silva, H. Park, J. R. Delayen, F. Marhauser, A. Hutton

Physics Faculty Publications

The twin-axis cavity is a new kind of rf superconducting cavity that consists of two parallel beam pipes, which can accelerate or decelerate two spatially separated beams in the same cavity. This configuration is particularly effective for high-current beams with low-energy electrons that will be used for bunched beam cooling of high-energy protons or ions. The new cavity geometry was designed to create a uniform accelerating or decelerating fields for both beams by utilizing a TM110 dipole mode. This paper presents the design rf optimization of a 1497 MHz twin-axis single-cell cavity, which is currently under fabrication.


Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. McEwen, H. Park 2017 Jefferson Laboratory

Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park

Physics Faculty Publications

The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly ...


Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson 2017 University of Windsor

Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson

Physics Publications

The absolute concentration of zinc in human fingernail clippings tested ex vivo was determined by 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy dispersive x-ray spectroscopy. Using this protocol, a partial least squares regression model predicted the zinc concentration in five subjects’ fingernails to within 7 ppm on average. The variation of the zinc concentration with depth into the nail as determined by laser-induced breakdown spectroscopy was studied and found to ...


Low Temperature Plasma For The Treatment Of Epithelial Cancer Cells, Soheila Mohades 2017 Old Dominion University

Low Temperature Plasma For The Treatment Of Epithelial Cancer Cells, Soheila Mohades

Electrical & Computer Engineering Theses & Dissertations

Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer ...


A Computational Study: The Effect Of Hypersonic Plasma Sheaths On Radar Cross Section For Over The Horizon Radar, Zachary W. Hoeffner 2017 Air Force Institute of Technology

A Computational Study: The Effect Of Hypersonic Plasma Sheaths On Radar Cross Section For Over The Horizon Radar, Zachary W. Hoeffner

Theses and Dissertations

In this study radar cross sections were calculated for an axial symmetric 6-degree half angle blunted cone with a nose radius of 2.5 cm and length of 3.5 m including and excluding the effects of an atmospheric hypersonic plasma sheath for altitudes of 40 km, 60 km and 80 km and speeds of 5 km/s, 6 km/s and 7 km/s. LAURA, was used to determine the plasma characteristics for the hypersonic flight conditions using a 11-species 2-temperature chemical model. Runs were accomplished first with a super-catalytic surface boundary condition without a turbulence model and then ...


Enhancing High-Order-Harmonic Generation By Time Delays Between Two-Color, Few-Cycle Pulses, Dian Peng, Liang-Wen Pi, M. V. Frolov, Anthony F. Starace 2017 University of Nebraska - Lincoln

Enhancing High-Order-Harmonic Generation By Time Delays Between Two-Color, Few-Cycle Pulses, Dian Peng, Liang-Wen Pi, M. V. Frolov, Anthony F. Starace

Anthony F. Starace Publications

Use of time delays in high-order-harmonic generation (HHG) driven by intense two-color, few-cycle pulses is investigated in order to determine means of optimizing HHG intensities and plateau cutoff energies. Based upon numerical solutions of the time-dependent Schrõdinger equation for the H atom as well as analytical analyses, we show that introducing a time delay between the two-color, few-cycle pulses can result in an enhancement of the intensity of the HHG spectrum by an order of magnitude (or more) at the cost of a reduction in the HHG plateau cutoff energy. Results for both positive and negative time delays as well ...


Velocity–Space Drag And Diffusion In A Model, Two-Dimensional Plasma, Mark Anthony Reynolds, B.D. Fried, G.J. Morales 2017 Embry-Riddle Aeronautical University - Daytona Beach

Velocity–Space Drag And Diffusion In A Model, Two-Dimensional Plasma, Mark Anthony Reynolds, B.D. Fried, G.J. Morales

M. Anthony Reynolds

The quasilinear fluctuation integral is calculated for a two-dimensional, unmagnetized plasma ~composed of charged rods!, and is expressed in terms of Fokker–Planck coefficients. It is found that in two dimensions, the enhanced fluctuations generated by fast electrons lead to anomalously large transport coefficients. In particular, the effect of a small population of fast electrons is only weakly dependent on their density. In three dimensions, the effect of fast electrons is masked by the dominant approximation, but higher-order terms describe processes similar to those in two dimensions, and these terms can become significant for weakly stable plasmas. The differences between ...


Ion Bernstein Waves Driven By Two Transverse Flow Layers, Mark Anthony Reynolds, G. Ganguli 2017 Embry-Riddle Aeroautical University - Daytona Beach

Ion Bernstein Waves Driven By Two Transverse Flow Layers, Mark Anthony Reynolds, G. Ganguli

M. Anthony Reynolds

The interaction between two narrow layers of E3B flow is investigated, along with their stability properties. The mode frequencies, growth rates, and eigenfunctions are calculated. It is found that the instability due to a single layer is robust to the inclusion of a second layer. Specifically, when the separation between the layers is on the order of the ion-cyclotron radius, there is strong coupling between the two layers and the second layer is destabilizing. In addition, when the flow velocities are in opposite directions a wide variety of modes is possible, including near-zero-frequency modes, resulting in broadband structure in both ...


Digital Commons powered by bepress