Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

819 Full-Text Articles 1,911 Authors 131,198 Downloads 70 Institutions

All Articles in Plasma and Beam Physics

Faceted Search

819 full-text articles. Page 5 of 29.

A Proposed Beam-Beam Test Facility Combine, E. Nissen, Geoffrey Krafft, Jean Delayen 2021 Old Dominion University

A Proposed Beam-Beam Test Facility Combine, E. Nissen, Geoffrey Krafft, Jean Delayen

Physics Faculty Publications

The COmpact Machine for Beam-beam Interactions in Non-Equilibrium systems (COMBINE) is a proposed, dedicated, beam-beam test facility. The base design would make use of a pair of identical octagonal rings (2.5 meters per side) one rotated 180 degrees from the other, meeting at their common interaction point. These would be fed by an electron gun producing up to 125 keV electrons. The low energy will allow for beam-beam tune shifts commensurate with existing colliders, some linac-ring type systems, and will also allow for an exploration of the predicted effects of gear-changing, which would be performed using a variable pathlength scheme. …


The Concept And Applications Of A Dual Energy Storage Ring, Bhawin Dital, Andrew Hutton, Geoffrey Krafft, Fanglei Lin, Vasiliy Morozov, Yuhong Zhang 2021 Old Dominion University

The Concept And Applications Of A Dual Energy Storage Ring, Bhawin Dital, Andrew Hutton, Geoffrey Krafft, Fanglei Lin, Vasiliy Morozov, Yuhong Zhang

Physics Faculty Publications

A dual energy electron storage ring configuration is initially proposed as an electron cooler to cool the ion beam in a collider. It consists of two energy loops, the electron beam in the high energy loop undergoes the synchrotron radiation damping to obtain the desired beam property and the beam in the low energy loop is for cooling of the ion beam. The two different energy loops are connected by an energy recovery linac. A lattice design of such a dual energy storage ring has been completed and beam stability conditions are established. We performed numerical simulations to demonstrate the …


Estimating The Azimuthal Mode Structure Of Ultra Low Frequency Waves And Its Effects On The Radial Diffusion Of Radiation Belt Electrons, Mohammad Barani 2021 West Virginia University

Estimating The Azimuthal Mode Structure Of Ultra Low Frequency Waves And Its Effects On The Radial Diffusion Of Radiation Belt Electrons, Mohammad Barani

Graduate Theses, Dissertations, and Problem Reports

Characterizing the azimuthal mode number 𝑚 of Ultra Low Frequency (ULF) waves is critical to quantifying the radial diffusion of radiation belt electrons. A Wavelet cross-spectral technique is applied to the compressional ULF waves observed by multiple pairs of GOES and MMS satellites to estimate the mode structure of ULF waves. A more realistic distribution of mode numbers is achieved by inclusion of the modes corresponding to different wave propagation directions as well as at 𝑚 higher than fundamental mode number. For the event study of a geomagnetic storm using GOES data, ULF wave power is found to dominate at …


Stellarator Optimization With Poloidal Field Coils, Haley Wilson, Andrew Ware, Aaron Bader, Chris Hegna 2021 The University Of Montana

Stellarator Optimization With Poloidal Field Coils, Haley Wilson, Andrew Ware, Aaron Bader, Chris Hegna

Undergraduate Theses, Professional Papers, and Capstone Artifacts

Stellarators are devices that use magnetic fields to optimize the conditions needed for plasmas to undergo fusion. Unlike tokamaks, stellarators do not rely on a plasma current but can produce a helical magnetic field using only external coils. In a stellarator, the coils surrounding the plasma are called modular coils and those that follow the plasma are called poloidal field coils. Modular coils can be difficult to build if they are too complex. An effort is underway to develop coil conditions that meet both physics and engineering constraints. The FOCUS code was developed to flexibly optimize stellarator coil configurations [C. …


Single And Multi-Photon Laser Induced Fluorescence For Electric Thruster And Fusion Applications, Thomas E. Steinberger 2021 West Virginia University

Single And Multi-Photon Laser Induced Fluorescence For Electric Thruster And Fusion Applications, Thomas E. Steinberger

Graduate Theses, Dissertations, and Problem Reports

Single and Multi-photon Laser Induced Fluorescence for Electric Thruster and Fusion Applications

Thomas Edward Steinberger

Laser-based diagnostics are increasingly sought after to investigate a variety of plasmas due to their non-perturbative capabilities. Specifically, laser induced fluorescence (LIF) provides a highly localized and precise spectroscopic technique to measure absolute density, temperature, and bulk flow. In this work, LIF and two-photon absorption laser induced fluorescence (TALIF) are used to investigate electric propulsion and fusion-relevant plasmas, respectively. Ion velocity distribution functions (IVDF) of singly ionized atomic iodine (I II) are measured for the first time and lineshape characteristics are presented for the diagnosis …


Laser-Induced Breakdown Spectroscopy And Plasmas Containing Cyanide, Christopher Matthew Helstern 2020 University of Tennessee, Knoxville

Laser-Induced Breakdown Spectroscopy And Plasmas Containing Cyanide, Christopher Matthew Helstern

Doctoral Dissertations

This dissertation focuses on laser-induced plasma of diatomic molecular cyanide. Optical breakdown plasma generation is produced by high-peak-power 1064 nm Q-switched nanosecond pulsed radiation. Laser-induced breakdown is performed on a 1:1 molar gas mixture of carbon dioxide and nitrogen held at a fixed pressure of 760 Torr, a 1:1 molar gas mixture of carbon dioxide and nitrogen held at a fixed pressure of 2069 Torr, and a flowing 1:1 molar gas mixture of carbon dioxide and nitrogen flowing at a rate of 100 mL per minute. Plasma shockwave measurements in laboratory air are shown to determine the shock front geometry …


Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith 2020 University of Tennessee, Knoxville

Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith

Doctoral Dissertations

Fusion energy devices, particularly tokamaks, face the challenge of interior surface damage occurring over time from the heat flux of the high-energy plasma they generate. The ability to monitor the rate of surface modification is therefore imperative, but to date no proven technique exists for real-time erosion measurement of planar regions of interest on plasma-facing components in fusion devices. In order to fill this diagnostic gap, a digital holography system has been established at ORNL [Oak Ridge National Laboratory] for the purpose of measuring the erosion effects of plasma-material interaction in situ.

The diagnostic has been designed with the …


Evidence For Electron Energization Accompanying Spontaneous Formation Of Ion Acceleration Regions In Expanding Plasmas, Evan M. Aguirre, Rikard Bodin, Neng Yin, Timothy N. Good, Earl E. Scime 2020 West Virginia University

Evidence For Electron Energization Accompanying Spontaneous Formation Of Ion Acceleration Regions In Expanding Plasmas, Evan M. Aguirre, Rikard Bodin, Neng Yin, Timothy N. Good, Earl E. Scime

Physics and Astronomy Faculty Publications

We report experiments conducted in an expanding argon plasma generated in the inductive mode of a helicon source in the Hot hELIcon eXperiment–Large Experiment on Instabilities and Anisotropies facility. As the neutral gas pressure increases, the supersonic ion acceleration weakens. Increasing neutral pressure also alters the radial profile of electron temperature, density, and plasma potential upstream of the plasma expansion region. Langmuir probe measurements of the electron energy probability function (EEPF) show that heating of electrons at the plasma edge by RF fields diminishes with increasing gas pressure, yielding a plasma with a centrally peaked electron temperature, and flat potential …


Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan 2020 University of Arkansas, Fayetteville

Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan

Graduate Theses and Dissertations

Due to the advanced focusing ability, characterization methods based on the electron-beam excitation have been broadly applied to investigate nanomaterials. Structural or compositional information is commonly acquired using electron microscopes. Moreover, taking advantage of the super spatial resolution of the focused electron beam, optical properties of nanomaterials can be also obtained. Herein, general concepts and processes of the interaction between electrons and materials are studied. Two specific optical nanomaterials, including plasmonic nanostructures and semiconductor quantum layers, are investigated by the cathodoluminescence (CL) measurement.

Surface plasmonic resonance can be generated when high-energy electrons strike the interface between the dielectric medium and …


Setting Constraints On The Lunar Exosphere: A Comprehensive Analysis Of Velocity Resolved Sodium And Potassium Line Profile Measurements, Dona Chathuni P. Kuruppuaratchi 2020 Embry-Riddle Aeronautical University

Setting Constraints On The Lunar Exosphere: A Comprehensive Analysis Of Velocity Resolved Sodium And Potassium Line Profile Measurements, Dona Chathuni P. Kuruppuaratchi

Doctoral Dissertations and Master's Theses

This dissertation outlines and presents the most comprehensive set of velocity-resolved measurements of sodium D2 (5889.9509 Å) lines taken over multiple lunations spanning seven years (2011 – 2017). These data are used to study the morphology and dynamics of the lunar exosphere. Additionally, potassium D1 (7698.9646 Å) is used as a complement to sodium. The two species approach, with sodium being the main attraction, provides constraints on the critical drivers of the lunar exosphere. Observations were made at the National Solar Observatory McMath – Pierce Telescope, Kitt Peak, Arizona where I personally collected both sodium and potassium data over about …


Effects Of The Radiation Belt On The Plasmasphere Distribution, Stefan Thonnard 2020 Utah State University

Effects Of The Radiation Belt On The Plasmasphere Distribution, Stefan Thonnard

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This study examines the interaction of plasma, ions and electrons created by Solar illumination in the Earth’s upper atmosphere, that travels along magnetic field lines filling the Plasmasphere, and the naturally occurring trapped particles known as the outer radiation belt. Although these two science disciplines have been largely worked independent of each other due the vast differences in the energy of the particles, recent satellite observations indicate a large population of particles with lower energy and greater mass also exist in the outer radiation belt. This study shows that during conditions of low solar output in an 11-year cycle, these …


Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde IV, Santasri R. Bose-Pillai 2020 Air Force Institute of Technology

Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai

AFIT Patents

A vector partially coherent source (VPCS) generator includes a laser that emits coherent light; an interferometer consisting of polarizing beam splitters (PBSs) to split the laser light into its vertical and horizontal polarization components;] first and second spatial light modulators (SLMs) that respectively control the vertical and horizontal polarization components; and a control system communicatively coupled to the first and second SLMs to adjust beam shape and coherence without physically moving or removing optical elements in the interferometer.


Numerical Model Of A Radio Frequency Ion Source For Fusion Plasma Using Particle-In-Cell And Finite Difference Time Domain, Augustin L. Griswold 2020 Portland State University

Numerical Model Of A Radio Frequency Ion Source For Fusion Plasma Using Particle-In-Cell And Finite Difference Time Domain, Augustin L. Griswold

University Honors Theses

Radio frequency (RF) plasma sources are common tool for application and study, and of particular interest for inertial electrostatic (IEC) fusion. Computational analysis is often carried out using particle in cell (PIC) methods or finite difference time domain (FDTD). However, a more holistic analysis is necessary as the particle distribution is highly dependant on the fields created by the plasma source. Herein, an analysis of a particular planar RF electrode with deuterium gas is provided which covers the fields and the particle behaviour using first FDTD then PIC. Further applications are discussed as well as further directions for this study.


Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner 2020 Washington University in St. Louis

Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner

McKelvey School of Engineering Theses & Dissertations

Nonequilibrium plasma (NEP) is an extraordinary environment for material synthesis. NEP is comprised of hot electrons with temperatures greater than 10000 K and of cold ions and neutrals that are usually at few hundred kelvins above room temperature. Due to this large difference in species’ temperatures, the assumption of local thermal equilibrium does not hold in NEP. Therefore, NEP can act as a unique processor of mass, and it can transform materials along pathways that are not accessible by methods wherein local thermal equilibrium is valid. For decades, NEPs have been employed in the semiconductor industry to manufacture many thin …


Investigation Of The Chemical Kinetics In An Atmospheric Cold Plasma Towards Co2 Conversion, Daniel Piatek 2020 Seton Hall University

Investigation Of The Chemical Kinetics In An Atmospheric Cold Plasma Towards Co2 Conversion, Daniel Piatek

Seton Hall University Dissertations and Theses (ETDs)

Hydrogenation of carbon dioxide (CO2) to methanol (CH3OH) is a promising route for utilization of excess and residual CO2. The conversion of CO to methanol is a well-developed process but the ability to use CO2 as a feed gas still requires high pressures (30-300 atm) to attain conversion. In this work, the hydrogenation of CO2 is explored using H2O as well as H2 in an atmospheric pressure nonthermal (cold) plasma created with a dielectric barrier discharge (DBD) reactor. Different gas mixtures such as argon (Ar) and helium (He) are used to understand their interactions in the process of CO2 hydrogenation. …


Characterization Of A Novel Double Cooled Electrode Dbd Reactor For Ozone Generation, Gustavo Duarte 2020 Seton Hall University

Characterization Of A Novel Double Cooled Electrode Dbd Reactor For Ozone Generation, Gustavo Duarte

Seton Hall University Dissertations and Theses (ETDs)

The Dielectric Barrier Discharge (DBD) is used to generate atmospheric or higher-pressure non-thermal plasmas and has found various commercial applications such as in industrial large-scale ozone generation. Ozone (O3 ) is a powerful chemical reactant that is used to kill bacteria, to deodorize and to perform water purification. The effectiveness of the DBD reactors depends on the electrode arrangements, gap lengths, dielectric materials, operating gases and feed gas quality to name a few. However, the production of O3 is heat sensitive. In order to prevent O3 destruction thermal cooling of the DBD is needed. The industry approach …


Topics In Gravitational Wave Physics, Aaron David Johnson 2020 University of Arkansas, Fayetteville

Topics In Gravitational Wave Physics, Aaron David Johnson

Graduate Theses and Dissertations

We begin with a brief introduction to gravitational waves. Next we look into the origin of the Chandrasekhar transformations between the different equations found by perturbing a Schwarzschild black hole. Some of the relationships turn out to be Darboux transformations. Then we turn to GW150914, the first detected black hole binary system, to see if the nonlinear memory might be detectable by current and future detectors. Finally, we develop an updated code for computing equatorial extreme mass ratio inspirals which will be open sourced as soon as it has been generalized for arbitrary inclinations.


Cherenkov Gamma Ray Detectors On High-Energy-Density Systems, Kevin Daniel Meaney 2020 University of New Mexico

Cherenkov Gamma Ray Detectors On High-Energy-Density Systems, Kevin Daniel Meaney

Physics & Astronomy ETDs

High energy density (HED) systems are some of the most extreme environments ever created by mankind. Systems with pressures greater than 1 MBar can only be created by a handful of devices on earth, often utilizing high intensity lasers or pulsed power machines. HED systems offer a view into an extreme form of matter only seen in stellar cores, supernovas and other powerful astrophysical systems. Creating HED systems on Earth offer the possibility, if the physics and technology can be matured, to one day create a fusion power plant. If a system is hot and dense enough, the fusion reaction …


Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar 2020 Missouri State University

Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar

MSU Graduate Theses

The exchange bias (EB) effect, especially in nanomaterials, is highly promising for use in antiferromagnet-based spintronics applications. NiO is a well known antiferromagnetic material with a high Néel temperature (525K) and can exhibit ferromagnetism/ ferrimagnetism by adding other magnetic transition elements. Our previous work has shown that the antiferromagnetic characteristics of conventional NiO insulating nanostructured material can be altered to have substantial ferrimagnetic characteristics by doping NiO with Mn or Co. Pulsed laser deposition (PLD) was used to grow heterostructures comprised of a nanostructured thin NiO film deposited on the surface of a MgO (100) and Al2O3 …


Characterizing Plasma With Emission Tomography-Feasibility Study On Synthetic And Experimental Data, M. Nikolić, A. Samolov, A. Godunov, L. Vušković,, S. Popović 2020 Old Dominion University

Characterizing Plasma With Emission Tomography-Feasibility Study On Synthetic And Experimental Data, M. Nikolić, A. Samolov, A. Godunov, L. Vušković,, S. Popović

Physics Faculty Publications

We present a feasibility study on different tomographic algorithms to overcome the issues of finite sets of projection data, limited viewing angles, and noisy data, which cause the tomographic reconstruction to be an ill-posed inversion problem. We investigated three approaches: single angle Abel inversion, two angle approach, and multiple angle 2D plasma tomography. These methods were tested on symmetric and asymmetric sample functions and on experimental results from a supersonic flowing argon microwave plasma sustained in a cylindrical quartz cavity. The analysis focused on the afterglow region of the microwave flow where a plasmoid-like formation was observed. We investigated the …


Digital Commons powered by bepress