Open Access. Powered by Scholars. Published by Universities.®

Tribology Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 104

Full-Text Articles in Tribology

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova Oct 2020

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova

Friction

This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years.


Experimental Study On The Tribo-Chemical Smoothening Process Between Self-Mated Silicon Carbide In A Water-Lubricated Surface-Contact Reciprocating Test, Le Jin, Herbert Scheerer, Georg Andersohn, Matthias Oechsner, Dieter Hellmann Oct 2020

Experimental Study On The Tribo-Chemical Smoothening Process Between Self-Mated Silicon Carbide In A Water-Lubricated Surface-Contact Reciprocating Test, Le Jin, Herbert Scheerer, Georg Andersohn, Matthias Oechsner, Dieter Hellmann

Friction

Silicon carbide (SiC) can be tribo-chemically smoothened during a self-mated sliding procedure in the aqueous environment. As well reported in the point-contact tests, this smoothening process works well due to the abundant water as oxidant. After this smoothening process, the tribo-surface is well polished, a closely mated tribo-gap naturally forms, and an ultra-low friction state is built. However, water in the tribo-gap could be insufficient in industrial applications, e.g., the seal gap in mechanical seals. In this study, the tribo-chemical smoothening behavior in such environment was researched. A surface-contact reciprocating test was used to simulate the aqueous environment where water …


Water-Based Superlubricity In Vacuum, Chen Xiao, Jinjin Li, Lei Chen, Chenhui Zhang, Ningning Zhou, Tao Qing, Linmao Qian, Jiyang Zhang, Jianbin Luo Oct 2020

Water-Based Superlubricity In Vacuum, Chen Xiao, Jinjin Li, Lei Chen, Chenhui Zhang, Ningning Zhou, Tao Qing, Linmao Qian, Jiyang Zhang, Jianbin Luo

Friction

This study achieved water-based superlubricity with the lubrication of H3PO4 solution in vacuum (highest vacuum degree <10-4 torr) for the first time by performing a pre-running process in air before running in vacuum. The stable water-based superlubricity was sustainable in vacuum (0.02 torr) for 14 h until the test was stopped by the user for non-experimental factor. A further analysis suggested that the superlubricity may be attributed to the phosphoric acid-water network formed in air, which can efficiently lock water molecules in the liquid lubricating film even in vacuum owing to the strong hydrogen bond interaction. Such capability to lock water is strongly affected by the strength of hydrogen bond and environmental conditions. The realization of water-based superlubricity with H3PO4 solution in vacuum can lead to its application in space environment.


Tribological Performance Of Novel Nickel-Based Composite Coatings With Lubricant Particles, Ignacio Tudela, Andrew J. Cobley, Yi Zhang Oct 2020

Tribological Performance Of Novel Nickel-Based Composite Coatings With Lubricant Particles, Ignacio Tudela, Andrew J. Cobley, Yi Zhang

Friction

The present study is focused on the evaluation of the tribological performance of novel Ni/hBN and Ni/WS2 composite coatings electrodeposited from an additive-free Watts bath with the assistance of ultrasound. Lubricated and non-lubricated scratch tests were performed on both novel composite coatings and on standard Ni deposits used as a benchmark coating to have an initial idea of the effect of the presence of particles within the Ni matrix. Under lubricated conditions, the performance of the Ni/hBN composite coating was very similar to the benchmark Ni coating, whereas the Ni/WS2 behaved quite differently, as the latter did not only show …


Numerical Analysis Of Time-Varying Wear With Elastic Deformation In Line Contact, Wanglong Zhan, Ping Huang Oct 2020

Numerical Analysis Of Time-Varying Wear With Elastic Deformation In Line Contact, Wanglong Zhan, Ping Huang

Friction

Wear is an important factor for failures of mechanical components. Current research on wear is mainly focused on experiments while the numerical simulation of wear is hardly used owing to the complexities of the wear process. Explaining the effect of friction on the wear process is important, as it will lead to a deeper understanding of the evolution of wear. This study proposed a numerical method to expound the wear process in the contact between an elastic cylinder and a half-space simulating the ring-block tester. There are two difficulties during the calculation; one is that the contact shapes vary with …


Correlating The Physicochemical Properties Of Magnesium Stearate With Tablet Dissolution And Lubrication, Julie L. Calahan Jan 2020

Correlating The Physicochemical Properties Of Magnesium Stearate With Tablet Dissolution And Lubrication, Julie L. Calahan

Theses and Dissertations--Pharmacy

Magnesium stearate (MgSt) is the most commonly used pharmaceutical excipient and is present in over half the tablet formulations on the market. In spite of its popularity as an effective lubricant, it has been repeatedly recognized that there is significant variability between MgSt samples, which can cause inconsistent lubrication between batches of MgSt. The hypothesis of this research is that the batch-to-batch variability in tablet lubrication and dissolution observed in tablet formulations containing different MgSt samples can be correlated with differences in MgSt physicochemical properties (fatty acid salt composition, crystal hydrate form, particle size and surface area). Developing correlations between …


Experimental Studies Of Interfacial Behavior Of Contact System During Liquid Mediated Rough Surfaces Separation, Nhat Le Jan 2020

Experimental Studies Of Interfacial Behavior Of Contact System During Liquid Mediated Rough Surfaces Separation, Nhat Le

All Graduate Theses, Dissertations, and Other Capstone Projects

In the applications related to liquid-solid interface, their operation could be affected by the properties of the interface especially the applications that have infinitesimal interaction force at the interface surface and high interaction velocity. This study provides real time dynamic force measurement in separation process along with the real time image acquisition to explain the deviation between theoretical and experimental methods. The experimental design, setup and initial conditions for experiment are described in detail for further study related to liquid separating force. The simulation model is created to apply the theoretical model in prediction of meniscus force for different initial …


Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, Prakash Sampath, Senthil Kumar V.S Dr Apr 2019

Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, Prakash Sampath, Senthil Kumar V.S Dr

Journal of Applied Packaging Research

Researchers now focus on the use of natural fiber polymer composites materials for packing applications. This attention is due to their low cost and renewable characteristics. Fabrication of composites with the use of renewable resources has many benefits of alternating from an appropriate management and reduction in industrial wastages, ecofriendly behaviour to cost effectiveness. The artificial fibers in packing industries can be replaced by natural fibers in the areas where stiffness and high strength are not the primary requirement. In the last decade the use of Natural fibers in the place of artificial fibers for reinforcements in epoxy resin matrix …


Final Design Review: Wear Test Machine, Justin Ju-Han Hou, Abraham Jack Mitchell, Alexandra Denae Pavano, Jahyun Kaylla Son Mar 2019

Final Design Review: Wear Test Machine, Justin Ju-Han Hou, Abraham Jack Mitchell, Alexandra Denae Pavano, Jahyun Kaylla Son

Mechanical Engineering

A California Polytechnic State University Senior Project team has been tasked by Marvin Engineering Co. to design and build a friction wear test fixture; the fixture is to characterize the coefficient of friction and potential friction wear of various industry adopted metal pairings in an oxygen-free environment. This final design review serves to document project research, full design process, method of operation of final product, and a comprehensive testing procedure.

The R&D department at Marvin Engineering Co. proposed this investigation in order to explore the phenomenon of friction and adhesive wear, specifically the occurrence of galling between stainless steel surfaces. …


Investigation Of Chip-Form And Tool-Wear In Turning Of Hardened Af9628 Alloy Under Various Cooling And Lubrication Conditions, Jason Wolf Jan 2019

Investigation Of Chip-Form And Tool-Wear In Turning Of Hardened Af9628 Alloy Under Various Cooling And Lubrication Conditions, Jason Wolf

Theses and Dissertations--Manufacturing Systems Engineering

Next generation defense and commercial applications for structural steels require new alloys that eliminate or reduce critical elements from their composition to lower cost and improve manufacturability, while maintaining or exceeding high strength and toughness requirements. A new alloy, denoted as AF9628, has recently been developed for this purpose and its manufacturing characteristics and the material response in component manufacturing must be fully understood.

In the present study, hardened AF9628 alloy was turned with a coated carbide cutting tool under fixed cutting speed, feed rate, and depth of cut parameters. This work focuses on chip-form and tool-wear analysis to understand, …


Photochemical Etching Of Nitrided Stainless Steel Piston Rings, Steven Sonntag Dec 2018

Photochemical Etching Of Nitrided Stainless Steel Piston Rings, Steven Sonntag

Mechanical Engineering Undergraduate Honors Theses

Piston rings are designed to provide a seal between the piston and the cylinder wall of internal combustion engines, keeping oil from the crankcase from getting into the combustion chamber. This means piston rings are the main point of contact between the piston and the cylinder wall, which causes the piston to experience high amounts of friction and wear. By texturing the surfaces of the cylinder wall and/or the piston ring, the amount of contact area can be reduced, allowing for less friction, slower wear, and better gas mileage. In this thesis experiments, photochemical etching processes were developed to etch …


Incorporation Of Silica Nanoparticles Into The Underlayer Of Pda/Ptfe Thin Coatings, Adedoyin Abe Aug 2018

Incorporation Of Silica Nanoparticles Into The Underlayer Of Pda/Ptfe Thin Coatings, Adedoyin Abe

Mechanical Engineering Undergraduate Honors Theses

Polytetrafluoroethylene (PTFE) is one of the most low friction and corrosion resistant solid lubricants. Prior studies have shown that a polydopamine (PDA) underlayer enhances the durability of PTFE thin coating. In this study, 100, 200, and 300 µL of aqueous silica nanoparticle (NP) solutions were added to the PDA deposition solution. The durability and coefficient of friction of PDA/PTFE thin coatings on stainless steel substrates are investigated with and without incorporating the silica NPs. The coatings were tested in dry contact conditions using a Universal Mechanical Tester (UMT) with a ball-on-flat configuration in a reciprocating motion. It was found that …


Understanding The Evolution Of Surface Texture Under Boundary Lubrication, Salil T. Bapat May 2018

Understanding The Evolution Of Surface Texture Under Boundary Lubrication, Salil T. Bapat

Graduate Theses and Dissertations

The objective of this research was to understand the evolution of surface texture under boundary/mixed lubrication (BL). Significant material/energy losses occur during BL because of direct contact between the two surfaces. Traditionally, tribofilms have been studied extensively for BL while textures have been used as a static engineering design parameter to enhance lubricant film properties. However, texture is dynamic at the tribological mating interface, where both physical and chemical interactions are continuously modulated. The evolution and the interplay between the tribofilm and texture is least studied in the literature, which is the focus of this research.

MoS2-based lubricants, known for …


A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck May 2018

A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck

Mechanical Engineering Undergraduate Honors Theses

Nanostructure-textured surfaces can reduce friction and increase the reliability of micro- and nanoelectromechanical systems (NEMS/MEMS). For MEMS incorporating moving parts, the fatigue properties of nanostructures pose a challenge to their reliability in long-term applications. In this study, the fatigue behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), bare hemispherical Al nanodots, and a flat Al/a-Si layered thin film have been studied using nanoindentation and nano-scale dynamic mechanical analysis (nano-DMA) techniques. Fatigue testing with nano-DMA shows that the deformation resistance of CSNs persists through 5.0 × 104 loading cycles at estimated contact pressures greater than 15 GPa. When the a-Si shell …


Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy Apr 2018

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one …


Evaluation Of High Velocity Wear, Armando Deleon Mar 2018

Evaluation Of High Velocity Wear, Armando Deleon

Theses and Dissertations

The HHSTT located at Holloman Air Force Base conducts hypersonic testing in a unique way. Rather than perform cost prohibitive flight testing or hypersonic wind tunnel testing, a rocket-powered sled propels test articles down a track. This test setup has been used to test at speeds up to 2885 m/s (~Mach 8.6). The sled is kept on the rails by utilizing slippers, fabricated to wrap around the rail [1]. This slipper design keeps the sled from separating from the rail during a test due to the airflow producing lift, in a designed effort to minimize the wear that occurs during …


Powder Bed Surface Quality And Particle Size Distribution For Metal Additive Manufacturing And Comparison With Discrete Element Model, Irene Yee Mar 2018

Powder Bed Surface Quality And Particle Size Distribution For Metal Additive Manufacturing And Comparison With Discrete Element Model, Irene Yee

Master's Theses

Metal additive manufacturing (AM) can produce complex parts that were once considered impossible or too costly to fabricate using conventional machining techniques, making AM machines an exceptional tool for rapid prototyping, one-off parts, and labor-intensive geometries. Due to the growing popularity of this technology, especially in the defense and medical industries, more researchers are looking into the physics and mechanics behind the AM process. Many factors and parameters contribute to the overall quality of a part, one of them being the powder bed itself. So far, little investigation has been dedicated to the behavior of the powder in the powder …


Mechanical Wear Debris Feature, Detection, And Diagnosis: A Review, Wei Hong, Wenjian Cai, Shaoping Wang, Mileta M. Tomovic Jan 2018

Mechanical Wear Debris Feature, Detection, And Diagnosis: A Review, Wei Hong, Wenjian Cai, Shaoping Wang, Mileta M. Tomovic

Engineering Technology Faculty Publications

Mechanical debris is an important product of friction wear, which is also a crucial approach to know the running status of a machine. Many studies have been conducted on mechanical debris in related fields such as tribology, instrument, and diagnosis. This paper presents a comprehensive review of these studies, which summarizes wear mechanisms (e.g., abrasive wear, fatigue wear, and adhesive wear) and debris features (e.g., concentration (number), size, morphology, and composition), analyzes detection methods principles (e.g., offline: spectrograph and ferrograph, and online: optical method, inductive method, resistive-capacitive method, and acoustic method), reviews developments of online inductive methods, and investigates the …


Erosion Degradation Characteristics Of A Linear Electro-Hydrostatic Actuator Under A High-Frequency Turbulent Flow Field, Yuan Li, Shaoping Wang, Mileta M. Tomovic, Chao Zhang Jan 2018

Erosion Degradation Characteristics Of A Linear Electro-Hydrostatic Actuator Under A High-Frequency Turbulent Flow Field, Yuan Li, Shaoping Wang, Mileta M. Tomovic, Chao Zhang

Engineering Technology Faculty Publications

The paper proposes a performance degradation analysis model based on dynamic erosion wear for a novel Linear Electro-Hydrostatic Actuator (LEHA). Rather than the traditional statistical methods based on degradation data, the method proposed in this paper firstly analyzes the dominant progressive failure mode of the LEHA based on the working principle and working conditions of the LEHA. The Computational Fluid Dynamics (CFD) method, combining the turbulent theory and the micro erosion principle, is used to establish an erosion model of the rectification mechanism. The erosion rates for different port openings, under a time-varying flow field, are obtained. The piecewise linearization …


Application Of Surface Treatments To Improve Fuel Efficiency Of Internal Combustion Engines, Amirabbas Akbarzadeh Oct 2017

Application Of Surface Treatments To Improve Fuel Efficiency Of Internal Combustion Engines, Amirabbas Akbarzadeh

LSU Master's Theses

To improve the tribological performance of contacting surfaces, different surface modification methods can be employed. Surface texturing and surface coating are examples of viable techniques developed for this purpose. Surface texturing involves creating micropatterns on the contacting surfaces while surface coating requires depositing a thin layer of a suitable material on the surface(s) to improve the component’s friction and wear characteristics. The performance of textured surfaces is affected by the geometric characteristic of textures.When dealing with surface coating parameters, the parameters of interests are the type of coating materials and their thicknesses.

The current study aims to experimentally study the …


Silicon Carbide Materials Properties Selection For Mechanical Seal Faces, William Charles Hoskins May 2017

Silicon Carbide Materials Properties Selection For Mechanical Seal Faces, William Charles Hoskins

Chancellor’s Honors Program Projects

No abstract provided.


Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic Mar 2017

Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

Transport-category or FAR/CS 25 certified airplanes may occasionally become braking energy capacity limited. Such limitation may exist when heavy airplanes are departing airports at high-density altitudes, on relatively long runways, and/or possibly with some tailwind component. A maximum braking energy VMBE speed exists which may limit the maximum allowable takeoff decision/action speed V1. The ever-existing possibility of high-speed rejected takeoff in such conditions may also limit the airplane gross weight for declared available distances. To gain deeper insights and acquire better understanding of the topic, a theoretical model of the maximum braking energy and the related VMBE speed for T-category …


Investigation Of An Axial Flow Rotary Valve Seal, Joseph K. Stieha Jan 2017

Investigation Of An Axial Flow Rotary Valve Seal, Joseph K. Stieha

Theses and Dissertations--Mechanical Engineering

This thesis investigates potential materials to be used in the rotary sealing industry that provide low power loss and minimize cost. The studied rotary valve utilizes slots that act as timing valves to allow for flow axially, through the seal face, at particular times within a heat pump cycle. This investigation examines various combinations of multiple PTFE materials, plastics, and soft metals that have been proven to provide low friction coefficients. Leakage and wear requirements are stated for the future use of the rotary valve and are used to determine the effectiveness of sealing the fluid while examining the power …


Tribological Testing And Analysis Of Ionic Liquids As Candidate Anti-Wear Additives For Next-Generation Engine Lubricants, William Charles Barnhill May 2016

Tribological Testing And Analysis Of Ionic Liquids As Candidate Anti-Wear Additives For Next-Generation Engine Lubricants, William Charles Barnhill

Masters Theses

In this work, fourteen ionic liquids (ILs) were assayed as potential next-generation engine oil additives. After screening for corrosion, thermal stability and oil solubility, candidate additives were subjected to friction and wear tests in both boundary and mixed regime lubrication. While each IL demonstrated friction and wear reduction compared to base oil without any additives, oil miscible ILs tetraoctylphosphonium bis 2-ethylhexyl phosphate ([P8888][DEHP]) and trioctylammonium bis 2-ethylhexylphosphate ([N888H][DEHP]) were the best performers in bench tests with a XX% and XX% improvement in wear over the base oil respectively. Each of these ILs excellent solubility and superior performance was attributed to …


Polytetraflouroethylene Thin Coatings For Tribological Applications, Samuel L. Jenkins May 2016

Polytetraflouroethylene Thin Coatings For Tribological Applications, Samuel L. Jenkins

Mechanical Engineering Undergraduate Honors Theses

Mechanical components with lower coefficients of friction decrease the amount of energy dissipated by the system due to friction. Coating these components would decrease the coefficients of friction between surfaces without sacrificing the strength of the components. A polytetrafluoroethylene (PTFE) layer adhered through a polydopamine (PDA) layer on a steel substrate will reduce the coefficient of friction on the substrate surface. This paper discusses different methods for attempting to increase the uniformity of the PDA layer as well as decrease the PDA coating time. Methods for increasing uniformity include using a particle disperser instead of a magnet stir rod, changing …


Study Of Role Of Meniscus And Viscous Forces During Liquid-Mediated Contacts Separation, Prabin Dhital Jan 2016

Study Of Role Of Meniscus And Viscous Forces During Liquid-Mediated Contacts Separation, Prabin Dhital

All Graduate Theses, Dissertations, and Other Capstone Projects

Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change …


Application Of Ultrasound In The Measurement Of Lubricant Fluid Film Thickness In The Piston-Cylinder Interface Of An Axial Piston Pump, Dhruv Subramaniam, Dan Mizell, Monika Ivantysynova Aug 2015

Application Of Ultrasound In The Measurement Of Lubricant Fluid Film Thickness In The Piston-Cylinder Interface Of An Axial Piston Pump, Dhruv Subramaniam, Dan Mizell, Monika Ivantysynova

The Summer Undergraduate Research Fellowship (SURF) Symposium

In this paper a feasibility study has been conducted to determine a technique for the measurement of lubricant fluid film thickness in the piston-cylinder interface of an axial piston pump. The thickness of the lubricant film has a significant impact on the efficiency of the piston pump yet it still remains an uncertainty. If the lubricant film is too thin then friction will cause excessive damage resulting in deformation of interacting surfaces resulting in further uncertainty in thickness measurement. If the lubricant film is too thick then there is excessive leakage which will compromise the efficiency of the system. Acoustic, …


Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead May 2015

Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead

Graduate Theses and Dissertations

As the expectations for modern machinery's tribological and thermal performances continue to rise, the retention of lubricant on the contact surfaces of their sliding components becomes an increasingly important issue. Friction and wear cause heat-related failures which lead to catastrophic damage to machinery. Evaporation of a lubricant's volatile constituents as well as lubricant migration leads not only to a reduction in lubricant quantity but also in its quality, thus facilitating component failures. In order to enhance component reliability, the surface should incorporate features that actively retain lubricants. The unique properties of nano-porous topographies such as their high surface area-to-volume ratio …


Magnetic Bearings For Non-Destructive Health Monitoring Of Rotating Machinery Supported In Conventional Bearings, M. Kasarda, D, Quinn, T. Bash, D. Inman, R. Kirk, Jerzy Sawicki Apr 2015

Magnetic Bearings For Non-Destructive Health Monitoring Of Rotating Machinery Supported In Conventional Bearings, M. Kasarda, D, Quinn, T. Bash, D. Inman, R. Kirk, Jerzy Sawicki

Dr. D Dane Quinn

This paper describes initial results from a project expanding the field of rotor health monitoring by using Active Magnetic Bearings (AMBs) as actuators for applying a variety of known force inputs to a spinning rotor in order to monitor and evaluate response signals resulting from these inputs on-line. Similar to modal analysis and other nondestructive evaluation (NDE) techniques which apply input signals to static structures in order to monitor responses; this approach allows for the measurement of both input and output response in a rotating system for evaluation. However, unlike these techniques, the new procedure allows for multiple forms of …


In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr Apr 2015

In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr

FIU Electronic Theses and Dissertations

The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown …