Open Access. Powered by Scholars. Published by Universities.®

Polymer Science Commons

Open Access. Powered by Scholars. Published by Universities.®

1,550 Full-Text Articles 1,826 Authors 295,823 Downloads 77 Institutions

All Articles in Polymer Science

Faceted Search

1,550 full-text articles. Page 4 of 58.

Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan 2022 University of Tennessee, Knoxville

Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan

Doctoral Dissertations

The intracellular environment is crowded with macromolecules that can occupy a significant fraction of the cellular volume. This can give rise to attractive depletion interactions that impact the conformations and interactions of biopolymers, as well as their interactions with confining surfaces. We used computer simulations to study the effects of crowding on biologically-inspired models of polymers. We showed that crowding can lead to attractive interactions between two flexible ring polymers, and we further characterized the adsorption of both flexible and semiflexible polymers onto confining surfaces. These results indicate that crowding-induced depletion interactions could play a role in the spatial organization …


Biomass Conversion To Bio-Derived Materials And Their Applications, Luna Liang 2022 University of Tennessee, Knoxville

Biomass Conversion To Bio-Derived Materials And Their Applications, Luna Liang

Doctoral Dissertations

Nowadays, fossil fuels still serve as the primary global energy resource. Replacing fossil fuels with renewable sources of energy and developing efficient energy storage technology is an urgent problem to solve. Lignocellulosic biomass has been investigated as a promising alternative for the production of biofuels, chemicals, and materials. In this dissertation, we studied the thermochemical biomass conversion strategies via different pretreatments strategies (e.g. dilute acid, ethanol, tetrahydrofuran, gamma-valerolactone) and genetic modification to overcome the biomass recalcitrance and achieve efficient conversion process. The biomass component structure of lignin and cellulose after thermal treatments were characterized and analyzed.

To further explore the …


Oligodimethylsiloxanes With Charged Chain Ends: Synthesis, Characterization, And Properties, Tianyu Li 2022 University of Tennessee, Knoxville

Oligodimethylsiloxanes With Charged Chain Ends: Synthesis, Characterization, And Properties, Tianyu Li

Doctoral Dissertations

Charged polymers have been intensively studied because of their scientific and industrial importance. In certain cases, a single charged group in the chain end can alter the structure and properties of a polymer dramatically. On the other hand, oligomers, which are different from both discrete small molecules and higher molecular weight polymers, have become an emergent class of materials. There are several charged chain-end functionalized oligomers reported, but this area has been largely unexplored. The work described in this dissertation is aimed at using well-characterized end-group functionalized oligodimethylsiloxane (oDMS) as model materials to understand the effects of charged end groups …


Accelerated Catalyst Diffusion In Chemically Amplified Resists, Christopher M. Bottoms 2022 University of Tennessee, Knoxville

Accelerated Catalyst Diffusion In Chemically Amplified Resists, Christopher M. Bottoms

Doctoral Dissertations

Quantitative reaction-diffusion models are critical for the development of high-resolution lithographic processes based on chemically amplified resists (CARs). CARs consist of a glassy polymer resin with a photoacid generator. Patterns are formed through a coupled reaction-diffusion process. It is known that reaction kinetics is controlled by the slow diffusion of acid-anion pairs (catalysts), and catalyst diffusion lengths partly control the pattern resolution and uniformity. However, it is difficult to quantify the diffusivity during reaction, let alone examine the roles of polymer-ion and ion-ion interactions on catalyst mobility, using direct measurements. This work presents a concerted experimental and computational effort to …


Development Of Upconverting Films Containing Singlet Sink, Blake McKay 2022 The University of Southern Mississippi

Development Of Upconverting Films Containing Singlet Sink, Blake Mckay

Honors Theses

Upconversion is the conversion of light from a longer wavelength to a shorter wavelength. This technique has a wide range of applications in solar technology, bioimaging, drug delivery, and many other fields.1 In this study, a three-part upconverting system was developed including a component termed singlet sink in order to increase upconversion efficiency. The components of this system included Palladium (II) Octaethylporphrin (PdOEP), pyrenebutanol, and 9-phenyl-10-(p-tolylethynyl)-anthracene (PTEA). A procedure was developed in order to create and process films containing these three materials dispersed in a poly(methyl methacrylate) (PMMA) matrix. Upconversion was analyzed in both solution and the …


Layered Epoxide-Amine/Boron Nitride/Graphene Nanocomposites For Enhanced Multifunctional Shielding, Alyssa J. Necaise 2022 The University of Southern Mississippi

Layered Epoxide-Amine/Boron Nitride/Graphene Nanocomposites For Enhanced Multifunctional Shielding, Alyssa J. Necaise

Honors Theses

The development of high-power electromagnetic wave sources in the modern era has the ability to interfere with aircraft electronics and cause localized heating – necessitating advanced materials for electromagnetic interference (EMI) and thermal shielding. Multifunctional nanoparticles dispersed within polymer matrices can combat these issues; however, the best way to combine thermally and electrically conductive species to maximize electromagnetic interference shielding and thermal shielding is undetermined. Multifunctional layered epoxide/amine nanocomposites were prepared from tetra and octafunctional epoxide monomers (TGDDM and SU-8), 4,4-DDS tetrafunctional amine curative, and 1 wt.% hexagonal boron nitride nanoplatelets and/or 1 wt.% graphene nanoplatelets to form monolayer and …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster 2022 Clemson University

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle 2022 University of Arkansas, Fayetteville

Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle

Chemical Engineering Undergraduate Honors Theses

This thesis covers a two part project: the production methods to create a double collagen binding domain molecule with a growth factor for wound healing applications and the development of a new in-house production method for isolating C1q from bovine blood. The wound healing molecule was created using transformation, sonication, and purification before being tested via electrophoresis SDS page and Western blots to confirm the molecule’s presence. The C1q in-house production method utilizes an ultrafiltration flow cell rather than dialysis at a critical point in the process, allowing for researchers to not only be able to use a single small …


Synthesis And Phase Transition Characterization Of Liquid Crystal Membranes With Slit-Like Pores, Isaac Hopwood 2022 University of Arkansas, Fayetteville

Synthesis And Phase Transition Characterization Of Liquid Crystal Membranes With Slit-Like Pores, Isaac Hopwood

Chemical Engineering Undergraduate Honors Theses

Membranes with slit-like pores have been of interest for some time due to their ability to reject smaller particles than traditional cylindrical-pored membranes at the same fluid flux. However, using liquid crystals as a template for this sort of membrane has not been thoroughly investigated. In this study, the liquid crystal mixture of RM257 (2-Methyl-1,4-phenylene bis(4-(3-(acryloyloxy)propoxy)benzoate)) and 5CB (4-Cyano-4'-pentylbiphenyl) for the purpose of manufacturing membranes with slit-like pores, the phase transition behavior of this LC mixture at various mole fractions of RM257, and the impact of mole fraction of RM257 in the liquid crystal (LC) mixture and membrane manufacturing conditions …


Quantification Of Slit-Like Pores Through Using Liquid Crystals As A Template, Dominique Savage 2022 University of Arkansas, Fayetteville

Quantification Of Slit-Like Pores Through Using Liquid Crystals As A Template, Dominique Savage

Chemical Engineering Undergraduate Honors Theses

The purpose of this research is to manufacture a membrane with slit-like pores to achieve particle filtration. Slit-like pore membranes are preferred over conventional membranes with cylindrical pores since slit-like pores have two length scales that can be manipulated to better control cut off and flux through the membrane. This project focuses on manufacturing slit-like pore membranes through the use of two liquid crystals, 1,4-bis[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene (RM257) and 4-Cyano-4′-pentylbiphenyl (5CB). This method for making slit-like pores has not been widely investigated nor has the morphology of the membrane pores and mechanical properties of such a membrane been addressed. It was found …


Reactive Thin Film Polymers And Thin Film Composite Membranes For The Rapid Screening Of Uranium Isotopes, Abenazer W. Darge 2022 Clemson University

Reactive Thin Film Polymers And Thin Film Composite Membranes For The Rapid Screening Of Uranium Isotopes, Abenazer W. Darge

All Dissertations

Traditional radiochemistry approaches for the detection of trace-level alpha-emitting radioisotopes in water require lengthy offsite sample preparations and do not lend themselves to rapid quantification. Therefore, a novel platform is needed that combines onsite purification, concentration, and isotopic screening with a fieldable detection system. My dissertation research objective was to develop novel reactive thin polymer films and thin film composite membranes for the selective separation of uranium from environmental water followed by direct isotopic analysis by alpha spectroscopy. Chapter 1 reviews progress made on uranium separation from aqueous matrices and discusses methods used for the determination of isotopic composition.

Chapter …


Novel Thermal Coating For High-Speed Airplanes, Abinash Satapathy, Lakshay Battu, Liam Watson, Nazanin Rajabi 2022 Kennesaw State University

Novel Thermal Coating For High-Speed Airplanes, Abinash Satapathy, Lakshay Battu, Liam Watson, Nazanin Rajabi

Symposium of Student Scholars

In comparison to various other materials, Carbon Fiber, specifically Carbon Fiber Reinforced Polymers (CFRP), is pre-eminent amongst other materials for use on aeronautical systems. Due to its high specific strength (strength-to-weight ratio), CFRP is prominent for carrying heavy loads while maintaining a lightweight build. However, when influenced by heat resulting from air resistance, CFRP is known to undergo serious degradation that would significantly decrease the effectiveness of the polymers. To prevent this degradation and maintain the strength of the CFRP, thermal protective layers (TPLs) are designed to shield the CFRP from heat exposure. This research is focused on the examination …


The Effect Of Chitosan On The Surface Properties Of Cellulose-Based Paper Obtained From The Stem Of Flaxseed, E A. Egamberdiev, Y T. Ergashev, Kh Kh Khaydullaev, G Y. Akmalova, G R. Rakhmonberdiev 2022 Tashkent State Technical University named after Islam Karimov

The Effect Of Chitosan On The Surface Properties Of Cellulose-Based Paper Obtained From The Stem Of Flaxseed, E A. Egamberdiev, Y T. Ergashev, Kh Kh Khaydullaev, G Y. Akmalova, G R. Rakhmonberdiev

Technical science and innovation

This paper examines the effects of chitosan, starch, and polyvinyl alcohol (PVA) to improve the surface properties of cellulose-based paper obtained from local raw materials. The polymers are incorporated into the paper polythene by spraying. The results showed that the addition of chitosan to paper polythene, which is made of cellulose fibers, has an improvement in surface properties compared to the effect of other additives. The degree of exposure of starch coincided with the degree of exposure of chitosan, but it resulted in a decrease in the water absorption potential of the paper compared to chitosan at the same concentration. …


Effects Of Fiber Orientation On The Coefficient Of Thermal Expansion Of Fiber-Filled Polymer Systems In Large Format Polymer Extrusion-Based Additive Manufacturing, José Luis Colón Quintana, Lucinda Slattery, Jon Pinkham, Joanna Keaton, Roberto A. Lopez-Anido, Keith Sharp 2022 University of Maine

Effects Of Fiber Orientation On The Coefficient Of Thermal Expansion Of Fiber-Filled Polymer Systems In Large Format Polymer Extrusion-Based Additive Manufacturing, José Luis Colón Quintana, Lucinda Slattery, Jon Pinkham, Joanna Keaton, Roberto A. Lopez-Anido, Keith Sharp

Civil Engineering Faculty Scholarship

Large format polymer extrusion-based additive manufacturing has been studied recently due to its capacity for high throughput, customizable bead size and geometry, and ability to manufacture large parts. Samples from three fiber-filled amorphous thermoplastic materials 3D printed using a Masterprint 3X machine from Ingersoll Machine Tools were studied, along with their neat counterparts. Characterization techniques included thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermo-mechanical analysis (TMA). TGA results showed that the fillers decreased the degradation temperature for most of the materials investigated, with a 30°C decrease for polycarbonate (PC) and a 12°C decrease for polyethylene terephthalate glycol (PETG). For …


The Electrical, Thermal, And Morphological Properties Of Microinjection-Molded Polypropylene Nanocomposites, Renze Jiang 2022 The University of Western Ontario

The Electrical, Thermal, And Morphological Properties Of Microinjection-Molded Polypropylene Nanocomposites, Renze Jiang

Electronic Thesis and Dissertation Repository

Microinjection molding (µIM) exhibits significantly higher shear rates and faster cooling rates, as compared to conventional injection molding, which affect the characteristics of its final products. The effect of carbon black (CB), carbon nanotubes (CNT), and graphene nanoplatelet (GNP) fillers on the electrical conductivity properties of microinjection-molded polypropylene (PP) nanocomposites was systematically studied. Results showed the electrical conductivity properties of PP/CNT and PP/CB microparts were significantly influenced by mold geometry. PP/CNT/CB hybrid filler microparts demonstrated synergistic increases in electrical conductivity and crystallization temperature with higher CNT loading. Morphological observations indicated significant CB and CNT phase separation. Powder-PP/GNP composites exhibited higher …


Tuning Electrochemical Interactions And Polymer Electrolyte Interfaces For Enhanced Organic Acid Separations Using Electrodeionization, Matthew Leo Jordan 2022 Louisiana State University and Agricultural and Mechanical College

Tuning Electrochemical Interactions And Polymer Electrolyte Interfaces For Enhanced Organic Acid Separations Using Electrodeionization, Matthew Leo Jordan

LSU Doctoral Dissertations

Chemical separations are critical processes for chemical and industrial plants to purify and isolate products however current separation technologies, such as distillation, rely on energy intensive processes. Electrochemical separation processes, such as electrodialysis and electrodeionization, are an energy efficient alternative that are emerging as an alternative for thermal-based separations. Organic acids are weakly ionizable species and susceptible for purification from process streams using electrochemical processes. Recently the fermentation route has garnered greater attention as a means for producing value-added chemicals, such as organic acids, from a renewable feedstock and aiding the circular economy. Some of the challenges electrodialysis faces for …


Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy 2022 University of Massachusetts Amherst

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy

Doctoral Dissertations

Block copolymer (BCP) melts undergo microphase seperation and form ordered soft matter crystals with varying domain shapes and symmetries. We study the con- nection between diblock copolymer molecular designs and thermodynamic selection of ordered crystals by modeling features of variable sub-domain geometry filled with individual blocks within non-canonical sphere-like and network phases that together with layered, cylindrical and canonical spherical phases forms “natural forms” of self- assembled amphiphilic soft matter at large. First, we present a model to revise our understanding of optimal Frank-Kasper sphere-like morphologies by advancing the- ory to account for varying domain volumes. We then develop generic …


New Isomeric Silicones: Synthesis, Compositions And Surface Properties, Yan Cong 2022 University of Massachusetts Amherst

New Isomeric Silicones: Synthesis, Compositions And Surface Properties, Yan Cong

Doctoral Dissertations

This dissertation presents research performed in the field of silicone polymer science, which refers to polymers with alternating silicon-oxygen backbones. Three research topics will be explored. The first topic involves the synthesis of trimethylsiloxysilsesquioxane (MT) copolymers with vinyl and hydride functionalities as reactive liquid silicone precursors. The second topic describes titration of dimethylsiloxy (D) composition into trimethylsiloxysilsesquioxane (MT) copolymers for the purpose of controlling the mechanical properties and thermal stabilities of the material. The last topic explores the modification of hydrophobic silicone surfaces with oxygen plasma to form silica-like, hydrophilic surfaces and the behaviors of hydrophobic recovery. The first chapter …


Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman 2022 The University of Western Ontario

Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman

Electronic Thesis and Dissertation Repository

Synthetic bone graft materials have become an increasingly popular choice for bone augmentation. Ceramic-based and polymer-based bone graft materials constitute the two main classes of synthetic bone graft materials. This study investigated the synthesis of novel bioactive composites for their potential use as bone graft biomaterials. Poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic class II organic/inorganic hybrid biomaterials were synthesized via a sol gel process. These biomaterials were then reacted with an ammonium phosphate solution to prepare their respective composites. For the first time, we successfully synthesized sol-gel derived bioceramic poly(diethyl fumarate-co-triethoxyvinylsilane) composites. In vitro bioactivity evaluation of poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic composites in simulated body fluid …


The Greenest Solar Power? Life Cycle Assessment Of Foam-Based Flexible Floatovoltaics, Koami Soulemane Hayibo, Pierce Mayville, Joshua M. Pearce 2022 Western University

The Greenest Solar Power? Life Cycle Assessment Of Foam-Based Flexible Floatovoltaics, Koami Soulemane Hayibo, Pierce Mayville, Joshua M. Pearce

Electrical and Computer Engineering Publications

This study presents a life cycle analysis (LCA) of a 10 MW foam-based floatovoltaics (FPV) plant installed on Lake Mead, Nevada, U.S. A material inventory of the flexible crystalline silicon (c-Si)-based module involved massing and determination of material composition of the module's encapsulation layers with ATR/FTR spectroscopy and electron microscopy. The LCA was performed using SimaPro and the results were interpreted in terms of cumulative energy demands, energy payback time, global warming potential, GHG emissions, and water footprint including negative values for reduced evaporation. A sensitivity analysis was performed on the lifetime of the modules and the foam-based racking. The …


Digital Commons powered by bepress