Open Access. Powered by Scholars. Published by Universities.®

Polymer Science Commons

Open Access. Powered by Scholars. Published by Universities.®

1,553 Full-Text Articles 1,833 Authors 331,727 Downloads 78 Institutions

All Articles in Polymer Science

Faceted Search

1,553 full-text articles. Page 1 of 58.

Study Of Reactive Distillation Equipment For Eterification Process, Abbos ELMANOV, Abdulaziz BAKHTIYOROV, Adham NORKOBILOV, Olimjon MAKSUDOV, Zarif ORIPOV 2024 Shahrisabz Branch of the Tashkent Institute of Chemical Technology, Shakhrisabz, Uzbekistan

Study Of Reactive Distillation Equipment For Eterification Process, Abbos Elmanov, Abdulaziz Bakhtiyorov, Adham Norkobilov, Olimjon Maksudov, Zarif Oripov

CHEMISTRY AND CHEMICAL ENGINEERING

The purpose of this work is to study the chemical technological processes for eterification processes, and the reactive distillation unit, which carries out the reaction and separation process in one device, was chosen as the object of research. А reаctive distillаtion system is exаmined to produce for the production of Ethyl Acetate (EtAc) viа eterificаtion of acetic acid (HAc) with ethаnol. Optimizаtion methods using sensitivity analysis аre аlso conducted. Cаlculаtion of vаpor liquid equilibrium of the mixture system is done using UNIFАC model. Heat integration from the distillate stream of the column to the acid feed stream and from bottom …


Research On 3d Printing Resin Exposure Properties And Its Application On Centrifugal Microfluidic Platform Based On Fluorescence Detection, Zheng Qiao 2024 Louisiana State University and Agricultural and Mechanical College

Research On 3d Printing Resin Exposure Properties And Its Application On Centrifugal Microfluidic Platform Based On Fluorescence Detection, Zheng Qiao

LSU Doctoral Dissertations

This dissertation encapsulates significant advancements in the field of SLA 3D printing and centrifugal microfluidics. Central to the research is the development of a novel mathematical model for predicting trapped resin thickness in SLA 3D printing, a groundbreaking contribution that addresses a critical aspect of printing intricate structures. This model, the first to establish a mathematical relationship for resin thickness, is rooted in a comprehensive study of the resin curing process. The research leverages the concept of 'critical dosage' for resin curing, leading to a more refined and theoretically grounded approach for calculating curing thickness. Experimentation further validates the model, …


Harnessing Nanocellulose For Sustainable Carbon Capture: Synthesis, Processing, And Performance Evaluation, Jerred C. Wassgren 2024 University of Massachusetts Amherst

Harnessing Nanocellulose For Sustainable Carbon Capture: Synthesis, Processing, And Performance Evaluation, Jerred C. Wassgren

Doctoral Dissertations

Scientists and governments have recognized the need for environmental remediation, most notably with the adoption of the Paris Agreement in 2016. One of the major concerns is the production of greenhouse gases (GHGs). The major GHG is carbon dioxide (CO2) in which humans emit over 36 gigatons yearly. Atmospheric CO2 is responsible for 60% of the heat retained by the earth – resulting in rising temperatures, melting ice caps, and increasing ocean acidification. Therefore, a major goal of the Paris Agreement was to reduce GHG emissions as well as the capture of CO2 from the atmosphere. …


Experimental Evaluation Of Mesh Size In Physically Crosslinked Polymer Gels Using Dynamic Light Scattering, Duncan M. Hill 2024 Bucknell University

Experimental Evaluation Of Mesh Size In Physically Crosslinked Polymer Gels Using Dynamic Light Scattering, Duncan M. Hill

Honors Theses

Block copolymer gels are under consideration as drug delivery patches. Controlling and modeling the transport inside the gel is an important contribution to the successful delivery of pharmaceuticals. The diffusive transport of a solute – such as a therapeutic compound – within the gel can be described by the mesh size of the gel, which is defined as the distance between polymer chains. Existing experimental evaluations of mesh size do not work for block copolymer gels due to differences in the fundamental gel structure. As such, an experimental method of measuring mesh size of block copolymer gels using dynamic light …


Robust Gasification Trial Results For A Variety Of Difficult-To-Recycle Packaging-Related Materials, Bruce A. Welt 2023 University of Florida

Robust Gasification Trial Results For A Variety Of Difficult-To-Recycle Packaging-Related Materials, Bruce A. Welt

Journal of Applied Packaging Research

Currently, recycling requires nearly absolute sorting of materials to accommodate the limited capabilities of existing recycling infrastructure. Whether a material is “recyclable” depends more on the method of recycling than the material itself. Our dependence upon sorting has limited success of recycling and has stifled our ability to achieve circular economy sustainability with plastic packaging materials. Our dependence upon sorting is rooted in our material-specific recycling processes. However, newer robust recycling processes are commercially available that reduce or eliminate the need to sort waste, and can convert mixed waste into primary feedstock chemicals, such as methanol for subsequent manufacture of …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman 2023 University of Maine

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda de Oliveira Nogueira 2023 University of Maine

The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira

Electronic Theses and Dissertations

Market trends show growing interest in cellulose nanomaterials due to their low environmental impact. However, current nanocellulose isolation technologies face technoeconomic and life cycle limitations. Previous research has shown that enzymatic treatments effectively reduce the energy input for mechanical nanocellulose isolation. Simultaneously, there is potential to improve the viability of cellulosic ethanol facilities by coproducing nanocelluloses as high-value product obtained from agricultural feedstock. Here, our goal was to study the mass balance of enzymatic-mechanical processes that coproduces cellulosic sugars and nanocelluloses, evaluating the technical feasibility of converting lignified and non-lignified materials.

First, we have determined a feasible 50:50 mass ratio …


Using Afm-Ir To Study Nanoscopic Phase Behavior Of Polymer Blends And Photovoltaic Bulk Heterojunctions, Nathaniel L. Prine 2023 The University of Southern Mississippi

Using Afm-Ir To Study Nanoscopic Phase Behavior Of Polymer Blends And Photovoltaic Bulk Heterojunctions, Nathaniel L. Prine

Dissertations

Conjugated polymers (CPs) and polymer blends harbor the potential for high-performance organic solar cells (OSCs) due to their short energy payback time, low cost, solution processability, lightweight attributes, and flexibility. However, OSCs suffer from poor thermal stability compared to their inorganic equivalents. This study explores the thermal instability of OSCs, focusing on phase separation of the photoactive layer under heat, resulting in morphology changes and degradation of power conversion efficiency (PCE). Utilizing atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) and differential scanning calorimetry (DSC), we delve into thermal stability-morphology relationships to devise strategies to improve OSC blend durability under thermal …


Development Of Lignin-Based Copolymers And Polymer Blends, David Chem 2023 University of Arkansas-Fayetteville

Development Of Lignin-Based Copolymers And Polymer Blends, David Chem

Graduate Theses and Dissertations

Increasing industrial interest in reducing fossil fuels in virgin polymer production and incorporating bio-based polymeric materials has led researchers to explore the potential of utilizing plant-based polymers such as lignin. Chapter 1 of this thesis presents a comprehensive overview of copolymerization and blending techniques for lignin and synthetic polymers, emphasizing different types of modifications and copolymerization techniques as well as key parameters such as temperature, reaction time, pH level, and solution compositions. These valorization methods are directed towards the development of high-value lignin-based materials with properties well-suited for various commercial applications. Chapter 2 offers a fundamental exploration into the amination …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise 2023 University of Nebraska-Lincoln

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Optimizing Channel Formation In Peg Maleimide Hydrogels, Bakthavachalam Kannadasan 2023 University of Massachusetts Amherst

Optimizing Channel Formation In Peg Maleimide Hydrogels, Bakthavachalam Kannadasan

Masters Theses

Blood vessels including the arteries, veins, and capillaries are a critical and indispensable component of various organisms. Some studies estimate that if all the blood vessels present in our body are arranged in line, they would amount to a total length of approximately 60,000 miles. This distance is enough to circle the world two and a half times! In addition to being all pervasive, blood vessels perform certain key functions such as delivery of oxygen and nutrients to various tissues in the body. They also assist in the spread of diseases such as cancer. Therefore, it is important to study …


Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe 2023 University of Massachusetts Amherst

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Engineering Of Functionalized Carbon Nano-Onions Embedded Bsa Nanocomposite Fibers For Stimuli-Responsive Drug Release, Ramiro Manuel Velasco Delgadillo, Narsimha Mamidi 2023 Instituto Tecnologico y de Estudios Superiores de Monterrey

Engineering Of Functionalized Carbon Nano-Onions Embedded Bsa Nanocomposite Fibers For Stimuli-Responsive Drug Release, Ramiro Manuel Velasco Delgadillo, Narsimha Mamidi

Research Symposium

Background: Advanced drug delivery systems (DDSs) have received enormous attention in biomedical applications due to their pharmacodynamic and pharmacokinetic drug properties. For the present study, poly 4-hydroxyphenyl methacrylate (PHPMA)/CNOs (f-CNOs) inserted bovine serum albumin (BSA) nanofibers were prepared for stimuli-responsive release of Doxorubicin (DOX). Temperature and pH would be altered to study the release of DOX in acidic microenvironments.

Methods: PHPMA were coupled with COOH-CNOs via ester coupling via the sonochemical method to produce PHPMA-CNOs (f-CNOs). Then, f-CNOs/DOX embedded BSA nanofibers were prepared at room temperature using Forcespinning. UV spectra of DOX-loaded nanofibers were studied to investigate the …


Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta 2023 New Jersey Institute of Technology

Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta

Theses

Many soft materials display unique and complex rheological behavior characterized by a transition from a solid-like to a fluid-like state upon the application of a force that exceeds the threshold to flow, known as the yield stress. Yield stress fluids are found in a wide range of commonly encountered materials including microgels, emulsions, and foams, and have been widely studied by rheologists over the last several decades. Carbopol is a popular polymeric microgel system as it displays simple, non-thixotropic rheological behavior and is typically seen as an ideal yield stress fluid. Previous research has demonstrated the reproducible behavior of shear …


Retracted: Fabrication And Characterization Of Wood Fiber Reinforced Polymer Composites, Firoz ahmed, Omar Faroque, Saif Hasan, Khan Rajib Hossain, Rezaul Karim Sheikh 2023 Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA

Retracted: Fabrication And Characterization Of Wood Fiber Reinforced Polymer Composites, Firoz Ahmed, Omar Faroque, Saif Hasan, Khan Rajib Hossain, Rezaul Karim Sheikh

Al-Bahir Journal for Engineering and Pure Sciences

Wood-polymer composites (WPCs) combine the properties of wood and polymers. Creating composites involves adding plant or wood fibers as fillers to a polymer matrix. This study used mahogany and mango wood sawdust as reinforcement materials, while high-density polyethylene (HDPE) and polyvinyl chloride (PVC) were used as matrices. The investigated data in this study comprises four different (10, 20, 30, and 40) weight percentages (wt%) of mahogany and mango sawdust paired with corresponding wt% (90, 80, 70, and60) of HDPE and PVC matrices. The extrusion method produced composites with different amounts of sawdust and polymer matrices. Wood polymer composites were characterized …


Elucidating Self-Assembly Of Semiconducting Polymers In The Presence Of A Low Molecular Weight Gelator, Madhubhashini Lakdusinghe 2023 Mississippi State University

Elucidating Self-Assembly Of Semiconducting Polymers In The Presence Of A Low Molecular Weight Gelator, Madhubhashini Lakdusinghe

Theses and Dissertations

Semiconducting polymers with a conjugated backbone are important for energy storage, conversion, and biomedical field applications. The self-assembly process of these polymers in solutions depends on the polymer concentration and quality of the solvent. The electrical properties of thin films obtained from the solution phase depend on the self-assembled process. Thin films of conjugated polymer gels with percolating networks of self-assembled structures display improved electrical conductivities. In this dissertation, we studied the impact of the secondary gel matrix formed by a low molecular weight gelator, on the self-assembly of conjugated polymers, the preservation of assembled structures in dried gel films …


Designing Bioinspired Materials With Tunable Structures And Properties From Natural And Synthetic Polymers, Anandavalli Varadarajan 2023 Mississippi State University

Designing Bioinspired Materials With Tunable Structures And Properties From Natural And Synthetic Polymers, Anandavalli Varadarajan

Theses and Dissertations

Biological systems are composed of complex materials which are responsible for performing various functions, such as providing structural support, mobility, functional adaptation to the environment, damage repair, and self-healing. These complex materials display excellent mechanical properties and can rapidly adapt to external stimuli. Thus, nature inspires in terms of source materials, functions, and designs to develop new-generation structural and functional materials. Polymers (natural or synthetic) are excellent sources of developing materials to mimic the functions of soft segments in biological systems. This dissertation focuses on synthesizing and characterizing two different materials with tunable structures and properties: complexes from natural polysaccharides …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady 2023 Clemson University

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Improving Lignin Recovery From Paper Mill And Biorefinery Waste Streams Via Liquid-Phase Splitting, Carter Fitzgerald 2023 Clemson University

Improving Lignin Recovery From Paper Mill And Biorefinery Waste Streams Via Liquid-Phase Splitting, Carter Fitzgerald

All Dissertations

Lignin is an abundant biopolymer with significant promise due to its aromaticity. It has been targeted as a replacement for a number of petroleum-based products including adhesives, coatings, polyurethane foams, activated carbon, and carbon fibers. However, commercially available bulk lignins are too polydisperse, and contain too many residual metals from the pulping process that are detrimental to the properties of the final product.

The Sequential Liquid-lignin Recovery and Purification (SLRP) process was developed by Michael Lake and John Blackburn, in collaboration with Clemson, with the intention of creating a continuous method for recovering lignin from paper-mill black liquors. Thies and …


The Biological Activity Of Dual-Responsive Glycopolymers For Intracellular Codelivery Of Antigen And Lipophilic Adjuvant, Micaela Shields 2023 University of Mississippi

The Biological Activity Of Dual-Responsive Glycopolymers For Intracellular Codelivery Of Antigen And Lipophilic Adjuvant, Micaela Shields

Honors Theses

Subunit vaccines present themselves as an attractive alternative to traditional approaches to vaccines, which utilizes whole organisms to trigger an immune response. While these traditional approaches have proven themselves reliable within the history of vaccinations, they generally deliver subpar robust cellular-mediated immunity and pose many safety risks. Composed of proteins and /or peptides, subunit vaccines are safer and more precise alternatives to traditional approaches. However, the pharmacokinetic properties of the macromolecules that make up these vaccines hinder the subunit vaccine’s level of immunogenicity [d1] Examples of this hindrance include but are not limited to aggregation at the injection site and …


Digital Commons powered by bepress