Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

226 Full-Text Articles 405 Authors 55,310 Downloads 32 Institutions

All Articles in Membrane Science

Faceted Search

226 full-text articles. Page 1 of 10.

Garver Industrial Design Project: Designing A Full-Scale Reverse Osmosis Water Treatment Facility For The City Of Lawton, Oklahoma, Kayliana Warden, Marlando Collins, Sandrina DePaz, Reid Eakin, Reed Leasure, Vera Rodriguez 2021 University of Arkansas, Fayetteville

Garver Industrial Design Project: Designing A Full-Scale Reverse Osmosis Water Treatment Facility For The City Of Lawton, Oklahoma, Kayliana Warden, Marlando Collins, Sandrina Depaz, Reid Eakin, Reed Leasure, Vera Rodriguez

Chemical Engineering Undergraduate Honors Theses

A groundwater treatment facility was designed for Lawton, Oklahoma to address potential water scarcity due to drought conditions in southwest Oklahoma. The facility will produce five million gallons per day (MGD) of treated water. The plant will have the capacity of treating 4,085 gallons per minute of influent water at an 86% recovery. The water to be treated will come from the Arbuckle-Timbered Hills Aquifer. Studies have been conducted around the aquifer to identify the best well site locations.

A centralized treatment facility using reverse osmosis filtration as the main treatment technology has been designed. To prevent reverse osmosis ...


High Temperature Polymer Electrolytes For Hydrogen Fuel Cells And Electrochemical Pumps, Gokul Venugopalan 2021 Louisiana State University

High Temperature Polymer Electrolytes For Hydrogen Fuel Cells And Electrochemical Pumps, Gokul Venugopalan

LSU Doctoral Dissertations

Hydrogen fuel cell and separation technologies such as proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pump (ECHP) offer a profound advantage in the transition to a low-carbon economy. An imperative hitch in hydrogen fuel cells and ECHP technology has been the electrocatalyst poisoning by carbon monoxide (CO) and other contaminants in the reactant mixture. By operating, hydrogen fuel cells and ECHPs at high temperatures (>200 °C), the effect of CO adsorption on the electrocatalyst surface could be curtailed. The high-temperature operation of devices necessitates a proton exchange membrane (PEM) to operate under anhydrous conditions.

In this work, a ...


Wetting Transition On 3d-Printed Featured Surface, Hannah Pineault 2021 The University of Akron

Wetting Transition On 3d-Printed Featured Surface, Hannah Pineault

Williams Honors College, Honors Research Projects

The primary objective of this research project was to gain a better understanding of surface characteristics to produce a long-lasting superhydrophobic or superhydrophilic surface. In other words, when will a droplet of water remain on top of a featured surface and when does the transition occur to water filling the grooves of the surface? This research focused on how to best fabricate porous structures that would stay completely dry at all times by preventing the liquid from penetrating. In particular, we followed the behaviors of water droplets placed on top of 3-D printed featured surfaces with various geometries and surface ...


Simulation Of Water Loading In Filter Medium, Anthony Mole 2021 The University of Akron

Simulation Of Water Loading In Filter Medium, Anthony Mole

Williams Honors College, Honors Research Projects

This research will model fluid flow through a filter plugged with water droplets using FlexPDE software. After simulations are run at various initial conditions, curves will be developed to correlate the permeability of the filter to variables like water droplet distribution and size.


The Effects Of Solution Condition On Virus Filtration Performance, Fnu Namila 2020 University of Arkansas, Fayetteville

The Effects Of Solution Condition On Virus Filtration Performance, Fnu Namila

Theses and Dissertations

Virus filtration is an integral part of the downstream purification of mammalian cell culture-derived biotherapeutics to assure the viral safety of the products. Virus filtration membranes remove viruses based on a size-exclusion mechanism. Commercial parvovirus filers possess unique membrane structure and are designed to remove smaller non-enveloped parvoviruses with size 18-26 nm. However, some filters face issues, such as pre-mature fouling, the decline of filtrate flux, and reduction in virus retention. This doctoral dissertation focused on identifying the factors that influence the filtrate flux and the virus retention capability of commercial virus filters. The effects of solution pH and ionic ...


Optimizing Membrane Distillation With Solar Thermal Collectors, Andrew Mason, Ben Shulders, Siamak Nejati 2020 University of Nebraska-Lincoln

Optimizing Membrane Distillation With Solar Thermal Collectors, Andrew Mason, Ben Shulders, Siamak Nejati

UCARE Research Products

With rising human populations, the demand for freshwater is an ever-growing problem. One emerging technology to combat this problem is membrane distillation (MD). MD has several advantages for water desalination including 100% rejection of solute (salt, heavy metals, etc.) and mergeability with other affordable energy sources (solar heat, electric resistance, etc.) However, at the moment the specific energy consumption (SEC) of MD is very high due to low water production rates and large energy inputs to heat water. In a solar‐assisted design for MD, the high cost of solar collectors (~$200/m2) inhibits the low cost of water production ...


Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar 2020 University of Kentucky

Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar

Center of Membrane Sciences Faculty Publications

Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability ...


Probing Counterion Condensation Phenomena In Nanostructured Thin Film Block Copolymer And Random Copolymer Electrolytes, Qi Lei 2020 Louisiana State University and Agricultural and Mechanical College

Probing Counterion Condensation Phenomena In Nanostructured Thin Film Block Copolymer And Random Copolymer Electrolytes, Qi Lei

LSU Doctoral Dissertations

This dissertation describes advanced metrology and molecular dynamics simulations for quantifying counterion condensation in block copolymer electrolyte thin films. The fraction of condensed counterions (fc) were quantified in nanostructured block copolymer electrolyte (BCE) and random copolymer electrolyte (RCE) thin films with new and established experimental techniques. The transition between the osmotic-controlled regime and condensation-controlled regime in BCEs and RCEs was identified using solution uptake measurements via a quartz crystal microbalance (QCM) and environmental grazing incidence small-angle x-ray scattering (GI-SAXS). The activity coefficients of ions in thin film were quantified experimentally and these values matched predictions from Manning’s Theory ...


Engineering Ionomer Materials For Addressing Ohmic Resistances In Electrochemical Desalination And Waste Heat Recovery, Varada Menon Palakkal 2020 Louisiana State University and Agricultural and Mechanical College

Engineering Ionomer Materials For Addressing Ohmic Resistances In Electrochemical Desalination And Waste Heat Recovery, Varada Menon Palakkal

LSU Doctoral Dissertations

Water scarcity and energy availability present important challenges that need to be addressed in the coming centuries. In the front of water technologies, desalting brackish water is of extreme importance for thermal electric power plants, chemical manufacturing plants, and other industrial operations that treat and reuse their water utilities. Membrane capacitive deionization (MCDI) is an energy efficient desalination technique that has drawn attention from commercial entities. Most material research studies on MCDI focus on enhancing electrode performance while little emphasis is given to rationale design of ion-exchange membranes (IEMs). In this work, the ionic conductivity, permselectivity, and thickness for three ...


Pollution Prevention Via Recovery Of Cerium (Iv) Oxide In Optics Company, Eugene Park, William Gallagher, Sydor Optics, Flint Creek Resources 2020 Rochester Institute of Technology

Pollution Prevention Via Recovery Of Cerium (Iv) Oxide In Optics Company, Eugene Park, William Gallagher, Sydor Optics, Flint Creek Resources

Articles

Pollution prevention methods were applied at an optics manufacturer in an effort to improve recovery of a valuable polishing component, cerium oxide (ceria), 77% of which was lost to dragout and sewer discharge. Centrifugation and microfiltratiion were evaluated to develop a process that would increase recovery of used ceria, which would then be sent back to the ceria supplier for reclamation and reuse. Full-scale implementation included a high-speed centrifuge that operates continuously with a microfiltration system through recirculation in a single process tank. Sydor Optics has improved ceria recovery from 23% to 48%, saving thousands of dollars annually.


Scale-Up Of Polyaniline Cellulose Membranes, Isaac Bodemann 2020 University of Arkansas, Fayetteville

Scale-Up Of Polyaniline Cellulose Membranes, Isaac Bodemann

Chemical Engineering Undergraduate Honors Theses

Polyaniline coated cellulose membranes show impressive conductive properties that may be used to innovate traditional charged separation techniques, such as electrodeionization. However, these membranes are not sold to consumers, so they cannot be easily integrated into such systems. This research focuses on the scale-up and development of positively charged anion exchange membranes to be used in EDI cells. Novel cellulose membranes were made using lab-specific cellulose. These membranes were then coated using a polyaniline technique adopted from a paper titled, “Flexible Electrically Conductive Nanocomposite Membrane Based on Bacterial Cellulose and Polyaniline." This paper details the methods used to add the ...


Analysis Of Blood Purification Studies On Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes, Tony Roller 2020 University of Arkansas, Fayetteville

Analysis Of Blood Purification Studies On Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes, Tony Roller

Biomedical Engineering Undergraduate Honors Theses

End-stage renal disease (ESRD) is currently the ninth leading cause of death in the United States, and of the 661,00 Americans diagnosed with ESRD, approximately 468,800 were on hemodialysis in 2016. Hemodialysis refers to a technique where a machine combined with a membrane, often referred to as an artificial kidney, is used to clean blood by removing any waste such as urea, potassium, and other smaller waste products while preserving the concentrations and integrity of cells and proteins in the blood. It has been shown in artificial blood studies that cellulose nanomaterials, like TEMPO/Oxidized cellulose nanoparticles (TOCNs ...


Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling 2020 University of Arkansas, Fayetteville

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling

Biomedical Engineering Undergraduate Honors Theses

The ninth leading cause of death in the United States is kidney disease, and hemodialysis is the process most commonly prescribed for treatment. It utilizes a selectively permeable membrane filter to remove toxins such as urea from the blood and retain necessary protein levels. However, traditional filters, such as cellulose triacetate, used during dialysis can be inefficient in terms of separation performance and reduction of fouling. Recent exploration of nanoparticles has resulted in the creation of Oxone Mediated TEMPO-Oxidized Nano Cellulose which has properties that are believed to increase hydrophilicity, increase tensile capacity, decrease membrane resistance and lower fouling, making ...


Fabrication Of Composite Membranes For Solar-Thermal Desalination, Andrew Mason, Mahdi Mohammadighaleni, Siamak Nejati 2020 University of Nebraska - Lincoln

Fabrication Of Composite Membranes For Solar-Thermal Desalination, Andrew Mason, Mahdi Mohammadighaleni, Siamak Nejati

UCARE Research Products

With rising human populations, the demand for freshwater is an ever-growing problem. One emerging technology to combat this problem is membrane distillation (MD). MD has several advantages for water desalination such as:

•100% rejection of solute (salt, heavy metals, etc.) •Mergeable with other affordable energy sources (solar heat, electric resistance, etc.)

However, at the moment the specific energy consumption (SEC) of MD is very high due to low water production rates and large energy inputs to heat water. In a solar-assisted design for MD, the high cost of solar collectors (~$200/m2) inhibits low cost of water production in comparison ...


Integrity Testing Of Gas Permeable Silicone Filters, Maggie M. Baker, Thomas P. Humann, Kevin J. Yerina 2020 California Polytechnic State University, San Luis Obispo

Integrity Testing Of Gas Permeable Silicone Filters, Maggie M. Baker, Thomas P. Humann, Kevin J. Yerina

Biomedical Engineering

This report investigates the most reasonable, cost efficient, and reliable ways to integrity test a filter made from a permeable silicone membrane for future biomedical and pharmaceutical applications. The goal of the project was to create a fixture that a pharmaceutical company can use to quickly and reliably test the integrity of the filter. A variety of methods are outlined to test the integrity of the filter, after a series of quantitative tests, a single method was established that meet the requirements most thoroughly. The method that was determined to be most effective involves a series of components including a ...


Polymeric Nanocomposite Membranes With Phosphorene Based Pore Fillers For Fouling Control, Joyner Eke 2020 University of Kentucky

Polymeric Nanocomposite Membranes With Phosphorene Based Pore Fillers For Fouling Control, Joyner Eke

Theses and Dissertations--Chemical and Materials Engineering

Phosphorene is a two-dimensional material exfoliated from bulk phosphorus. Specifically, relevant to the field of membrane science, the band gap of phosphorene provides it with potential photocatalytic properties, which could be explored in making reactive membranes able to control the accumulation of compounds on the surface during filtration, or fouling. Another reason phosphorene is a promising candidate as a membrane material additive is due to its catalytic properties which can potentially destroy foulants on the membrane surface.

The first goal of this study was to develop an innovative and robust membrane able to control and reverse fouling with minimal changes ...


Dynamic Study Of Mo/Zsm-5 Catalyst For Ch4 Dehydroadomation, Hadi Yahya Almusawa 2020 West Virginia University

Dynamic Study Of Mo/Zsm-5 Catalyst For Ch4 Dehydroadomation, Hadi Yahya Almusawa

Graduate Theses, Dissertations, and Problem Reports

Methane dehydroaromatization (CH4-MDA) is a highly promising venture for natural gas utilization/exploitation, i.e., direct conversion of methane (CH4) to liquid aromatics (benzene) and hydrogen. This process is a catalytic reaction and therefore, is subject to all the advantages and constraints of catalysis. This study discussed the structure and reactivity of Mo/ZSM-5 zeolite catalysts and their effect on the active conversion of methane to valuable aromatic products such as benzene: 1) The preparation and characterization of Mo/ZSM-5, which are crucial steps in any catalytic reaction process since a better performing catalyst consequently leads to ...


Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan 2020 University of Kentucky

Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan

Theses and Dissertations--Chemical and Materials Engineering

The detoxification of chlorinated organics from groundwater, such as trichloroethylene (TCE), tetrachloroethylene (PCE), polychlorinated biphenyl (PCB) and carbon tetrachloride (CTC), is a challenging area. Reductive dechlorination has been investigated using iron and iron-based nanoparticles, such as bare Fe, sulfidized Fe (S-Fe) and palladized Fe (Pd-Fe). However, issues including particle agglomeration, difficulties in recycling and particle leaching have been reported to hinder the application and wide usage of these techniques. The integration of nanoparticles and membranes can address these issues because of the large surface area, stability, and the potential for versatile functionalities. In this study, commercial polyvinylidene difluoride (PVDF) microfiltration ...


A Thermodynamic And Feasibility Study Of Green Solvents For The Fabrication Of Water Treatment Membranes, Xiaobo Dong 2020 University of Kentucky

A Thermodynamic And Feasibility Study Of Green Solvents For The Fabrication Of Water Treatment Membranes, Xiaobo Dong

Theses and Dissertations--Chemical and Materials Engineering

Nonsolvent induced phase separation (NIPS) has been widely used to fabricate polymeric membranes. In NIPS, a polymer is dissolved in a solvent to form a dope solution, which is then cast on a substrate and immersed in a nonsolvent bath, where phase inversion occurs. Petroleum-derived organic solvents, such as N-Methyl-2-Pyrrolidone (NMP) and Dimethylacetamide (DMAc), have been traditionally used to fabricate polymeric membranes via NIPS. However, these solvents may have negative impacts on environmental and human health; therefore, using greener and less toxic solvents, preferably derived from biomass, is of great interest to make membrane fabrication sustainable. In this dissertation, two ...


Towards Efficient Water Treatment: Mechanism Of Colloidal Fouling Of Ultrafiltration Membranes, Ikenna Henry Ozofor 2020 Michigan Technological University

Towards Efficient Water Treatment: Mechanism Of Colloidal Fouling Of Ultrafiltration Membranes, Ikenna Henry Ozofor

Dissertations, Master's Theses and Master's Reports

This research study first reviewed challenges of conventional and membrane separation systems for water treatment. Though membrane separation systems appeared superior to the conventional counterparts for water and wastewater treatment, wider applications of membrane systems have been limited by some factors, most notably is membrane fouling. Experimental studies were therefore conducted to achieve the goal of this research, which is to investigate how feed properties affect fouling of ultrafiltration (UF) membranes by colloids.

Feed salinity, pH, and nanoparticle concentration were the variables studied to unravel how different UF membranes are fouled by model silica colloids (with average diameter of 25nm ...


Digital Commons powered by bepress