Open Access. Powered by Scholars. Published by Universities.®

Polymer Science Commons

Open Access. Powered by Scholars. Published by Universities.®

1,551 Full-Text Articles 1,827 Authors 331,727 Downloads 77 Institutions

All Articles in Polymer Science

Faceted Search

1,551 full-text articles. Page 3 of 58.

Utilizing Computer-Aided Molecular Design With Azido-Ester Plasticizers, Justin Ebert 2023 The University of Akron

Utilizing Computer-Aided Molecular Design With Azido-Ester Plasticizers, Justin Ebert

Williams Honors College, Honors Research Projects

The goal of this project was to utilize Computer-Aided Molecular Design (CAMD) using the Signature molecular descriptor to inversely design optimized azido-ester plasticizers. Azido-ester plasticizers are used to modify the mechanical properties of propellant and explosive formulations. With the assistance of quantitative structure-property relationships, QSPRs, and two types of constraint equations, these new, novel plasticizers have the potential to possess optimal physical and chemical properties. Properties investigated in this work were decomposition temperature, heat of formation, glass transition temperature, and molecular weight. These properties were chosen for their importance when formulating propellants or explosives. After the filters were applied to …


Beeswax Wraps As An Alternative To Single-Use Plastics, Sarah Skiver 2023 The University of Akron

Beeswax Wraps As An Alternative To Single-Use Plastics, Sarah Skiver

Williams Honors College, Honors Research Projects

The project goal was to compare the food storage efficacy of sustainable beeswax wraps verses the single-use plastic methods of resealable plastic sandwich bags and plastic cling wrap. The goal was also to test the reusability of the beeswax wraps, as it is a key advantage of beeswax wraps that is advertised. The project purpose was to explore sustainable and eco-friendly alternatives to single use plastics, which are harmful to the environment in both their production and their disposal. Food spoilage was compared in beeswax wrap, plastic sandwich bags, and plastic cling wrap, and spoilage was also observed in a …


Comparing Weathering Effects Of Ultraviolet And Xenon Arc Accelerated Aging On Polyvinyl Chloride, Collin McInnes 2023 The University of Akron

Comparing Weathering Effects Of Ultraviolet And Xenon Arc Accelerated Aging On Polyvinyl Chloride, Collin Mcinnes

Williams Honors College, Honors Research Projects

As the ubiquitousness of polymers increases and begins seeing use in outdoor settings, the need to fully understand how these materials degrade is also necessary. This study aims to compare two known accelerated aging methods, namely an ultraviolet light chamber and a xenon arc light chamber, to understand what differences, if any, manifest in the mechanical, chemical, and cosmetic deterioration of polyvinyl chloride (PVC) after long-term exposure. The study utilizes Fourier-transform infrared spectroscopy, dynamic mechanical analysis, thermogravimetric analysis, and colorimetry analysis to determine the extent of degradation and potential discrepancies between the aging methods.


An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez 2023 Georgia Southern University

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Structure And Dynamics Of Lignin In Condensed Phase For Biomass Conversion, Nusrat Jahan 2022 Mississippi State University

Structure And Dynamics Of Lignin In Condensed Phase For Biomass Conversion, Nusrat Jahan

Theses and Dissertations

Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Harnessing the full potential of the lignocellulosic biomass for low-carbon energy requires the knowledge of efficient breakdown and fractionation of its carbohydrates and lignin. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Through all-atom MD simulation, we analyze the conformational transition of diverse lignin molecules in varying concentration of Methanol/water , DMSO/water …


Programming The Properties Of Branched Polymers Through Precision Architectures, Michael R. Dearman 2022 Louisiana State University and Agricultural and Mechanical College

Programming The Properties Of Branched Polymers Through Precision Architectures, Michael R. Dearman

LSU Master's Theses

The glass transition of branched polymers is determined by multiple structural parameters that dictate their inter- and intramolecular interactions, and ultimately, their molecular packing in the amorphous phase. Here we examined the impact of side chain length, backbone length, molecular weight composition, and topology on the glass transition behavior of bottlebrush polymers. Through examining precision bottlebrush polymer libraries (PBP, ĐSC = 1.0), we find the infinite molecular weight Tg is reached at a specific brush length after which the effect of the side-chain length dominates. Being a factor more dominant than the backbone, side-chain length affects the Tg of bottlebrush …


Analysis Of Physicochemical Properties And Terrestrial Dynamics Of Mechanically Formed Micro-Nano Scaled Particles From Agricultural Plastic Mulches, Anton Friedrich Astner 2022 University of Tennessee, Knoxville

Analysis Of Physicochemical Properties And Terrestrial Dynamics Of Mechanically Formed Micro-Nano Scaled Particles From Agricultural Plastic Mulches, Anton Friedrich Astner

Doctoral Dissertations

Release of microplastics (MPs) and nanoplastics (NPs) into agricultural fields is of great concern due to their reported ecotoxicity to organisms that provide beneficial service to the soil such as earthworms, and the potential ability of MPs and NPs to enter the food chain. Most fundamental studies of the fate and transport of plastic particulates in terrestrial environments employ idealized MP materials as models, such as monodisperse polystyrene spheres. In contrast, plastics that reside in agricultural soils consist of polydisperse fragments resulting from degraded films employed in agriculture. There exists a need for more representative materials in fundamental studies of …


Confinement And Interface Effects In Self Assembly Of Functional Block Copolymers, Jonathan P. Coote 2022 University of Tennessee, Knoxville

Confinement And Interface Effects In Self Assembly Of Functional Block Copolymers, Jonathan P. Coote

Doctoral Dissertations

Functional block copolymers are of increasing interest for their ability to combine the functional properties of one polymer, such as a polymer electrolyte or semiconductor, with the mechanical properties of another polymer. Balancing properties in this way can be challenging, however, due to the complex relationship between self-assembled morphology and resulting properties. Interface effects in particular, whether due to confinement within a self-assembled domain or at macroscopic boundary, are poorly understood in such functional block copolymers. This dissertation consists of two main thrusts, each investigating confinement or interfacial effects in a different functional block copolymer system. The first thrust focuses …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere 2022 Clemson University

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Sustainable Material For Urea Delivery Based On Chitosan Cross-Linked By Glutaraldehyde Saturated Toluene: Characterization And Determination Of The Release Rate Mathematical Model, Jayanudin Jayanudin, Retno S. D. Lestari, Indar Kustiningsih, Dandi Irawanto, Rozak Rozak, Reyonaldo L. A. Wardana, Fakhri Muhammad 2022 Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa

Sustainable Material For Urea Delivery Based On Chitosan Cross-Linked By Glutaraldehyde Saturated Toluene: Characterization And Determination Of The Release Rate Mathematical Model, Jayanudin Jayanudin, Retno S. D. Lestari, Indar Kustiningsih, Dandi Irawanto, Rozak Rozak, Reyonaldo L. A. Wardana, Fakhri Muhammad

Karbala International Journal of Modern Science

The aims of this study were to characterize the urea-loaded chitosan microspheres and determine the release kinetic constants and diffusion coefficients. An emulsion cross-linking method was used to prepare the urea-loaded chitosan microspheres. Urea was dissolved in a solution of chitosan then put into vegetable oil and stirred to form an emulsion. Glutaraldehyde saturated toluene (GST) was added into the emulsion dropwise while continuously stirring for the solidification process. Chitosan microspheres filled with urea were washed, dried, and then analyzed. Characterization of the urea-loaded chitosan microspheres was conducted using a scanning electron microscope (SEM), Raman spectroscopy, X-ray diffraction, and particle …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei 2022 University of Massachusetts Amherst

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian 2022 University of Massachusetts Amherst

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan 2022 University of Maine

Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan

Electronic Theses and Dissertations

Self-standing cellulose nanofibril (CNF) films are regarded as one of the promising alternatives to current petroleum-based packaging materials. The mechanical and barrier properties of CNF films are not yet up to the mark for certain applications, especially at high relative humidity. Those properties of CNF films can be tuned by the drying methods of films, degree of fibrillation, cross-linking, and controlled shrinkage. A comprehensive understanding of these processes and their influence on the structure and properties of CNF films have been presented in this thesis.

First, we prepared CNF films from CNF suspensions with two different degrees of fibrillation- standard …


Contact Dewatering Of Cellulose Nanofibers For Biopolymer Composite Applications, Alexander Collins 2022 University of Maine

Contact Dewatering Of Cellulose Nanofibers For Biopolymer Composite Applications, Alexander Collins

Electronic Theses and Dissertations

Cellulose Nanofibrils (CNFs) are promising materials for reinforcement of polymer matrices attributable to their impressive physical and mechanical properties, as well as their biodegradability. However, the utilization of these materials in composites is made challenging by the water content of CNF slurries, the tendency of CNFs to agglomerate as they dry, and incompatibility between hydrophilic CNFs and hydrophobic polymer matrices. The most commercially viable drying methods to produce small-scale dry CNFs, such as spray drying, are very energy intensive, can only dry the materials down to micron-scale agglomerates, and do not preserve fibrillar aspect ratios. “Contact dewatering,” or the removal …


Experimental Study On Co2-Sensitive Polyacrylamide As Potential In-Situ Sealing Agent For Co2 Leakage Pathways In Geological Storage Sites, Iris Laihmen Quan Lopez 2022 Mississippi State University

Experimental Study On Co2-Sensitive Polyacrylamide As Potential In-Situ Sealing Agent For Co2 Leakage Pathways In Geological Storage Sites, Iris Laihmen Quan Lopez

Theses and Dissertations

As the world pushes for ‘greener’ technologies and carbon neutrality, efforts have focused on creating novel ways to mitigate humankind’s carbon footprint. Carbon capture and storage (CCS) has become a prevalent technique that has proven to be an effective long-term method to safely relocate excess carbon dioxide (CO2) into subsurface formations. However, CCS is a newer technique which requires constant monitoring due to potential leakage pathways present in CO2 storage sites; therefore, a preventive approach to seal leakage pathways is recommended. This dissertation explores the potential of CO2-sensitive polyacrylamide (CO2-SPAM) as a novel …


Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws 2022 University of Tennessee, Knoxville

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


Development Of A New Affinity Membrane For Rapidly Purifying Non-Antibody Proteins, Friendship Edioma 2022 Clemson University

Development Of A New Affinity Membrane For Rapidly Purifying Non-Antibody Proteins, Friendship Edioma

All Theses

This thesis project describes the modification and evaluation of a new affinity membrane for rapid chromatographic purification of non-antibody proteins. The affinity membrane utilizes Im7/CL7 coupling technology developed by Dr. Vassylyev's lab at the University of Alabama Birmingham (UAB), licensed by TriAltus Bioscience. The behavior of the membrane was evaluated using purified CL7-tagged Cas9 as my model protein for static and dynamic binding capacity analysis.

Chapter one provides an overview on biopharmaceutical drug production process development. I discuss how protein drugs are produced, isolated, and purified from the cell supernatant after upstream phases are completed. Despite increasing demands for biologics, …


Polymers And Composite Materials, Joshua P. Steimel 2022 University of the Pacific

Polymers And Composite Materials, Joshua P. Steimel

Pacific Open Texts

This text serves to cover in more detail polymer physics concepts and specifically how polymers respond from the atomistic to meter length scale. This text spans topics from polymerization chemistry, chain models, Flory-Huggins theory, viscosity, characterization techniques, self assembly, polymer dynamics, viscoelasticity, and mechanics of polymer and composite materials.

This work is licensed under a Creative Commons Attribution-NonCommerical-No Derivative Works 4.0 License.


Machine Learning Prediction Of Glass Transition Temperature Of Conjugated Polymers From Chemical Structure, Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia 2022 North Dakota State University

Machine Learning Prediction Of Glass Transition Temperature Of Conjugated Polymers From Chemical Structure, Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia

Faculty Publications

Predicting the glass transition temperature (Tg) is of critical importance as it governs the thermomechanical performance of conjugated polymers (CPs). Here, we report a predictive modeling framework to predict Tg of CPs through the integration of machine learning (ML), molecular dynamics (MD) simulations, and experiments. With 154 Tg data collected, an ML model is developed by taking simplified “geometry” of six chemical building blocks as molecular features, where side-chain fraction, isolated rings, fused rings, and bridged rings features are identified as the dominant ones for Tg. MD simulations further unravel the fundamental roles …


Shape Memory Polymer Foaming With Tunable Interconnectivity Using Off-The-Shelf Foaming Components, Natalie Marie Petryk 2022 Syracuse University

Shape Memory Polymer Foaming With Tunable Interconnectivity Using Off-The-Shelf Foaming Components, Natalie Marie Petryk

Theses - ALL

The ability to tune pore structures of gas-blown polyurethane shape memory polymer (SMP) foams easily and safely could improve their outcomes as hemostatic dressings or tissue engineering scaffolds and overall commercialization efforts. Incorporating physical blowing agents into the polymer mix can be used to tune pore size and interconnectivity without altering foam chemistry. Enovate (HFC-254fa) is a commonly used physical blowing agent in gas-blown foams, but the Environmental Protection Agency (EPA) considers its use unacceptable because it is a hydrofluorocarbon that contributes to global warming. Here, off-the-shelf solvents accepted for use by the EPA, acetone, dimethyoxymethane (methylal), and methyl formate, …


Digital Commons powered by bepress