Open Access. Powered by Scholars. Published by Universities.®

OS and Networks Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1598

Full-Text Articles in OS and Networks

Secure Cloud-Based Iot Water Quality Gathering For Analysis And Visualization, Soin Abdoul Kassif Baba M Traore Dec 2022

Secure Cloud-Based Iot Water Quality Gathering For Analysis And Visualization, Soin Abdoul Kassif Baba M Traore

Symposium of Student Scholars

Water quality refers to measurable water characteristics, including chemical, biological, physical, and radiological characteristics usually relative to human needs. Dumping waste and untreated sewage are the reasons for water pollution and several diseases to the living hood. The quality of water can also have a significant impact on animals and plant ecosystems. Therefore, keeping track of water quality is a substantial national interest. Much research has been done for measuring water quality using sensors to prevent water pollution. In summary, those systems are built based on online and reagent-free water monitoring SCADA systems in wired networks. However, centralized servers, transmission …


Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing Yang, Chen Zhang, Baihua Zheng Dec 2022

Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing Yang, Chen Zhang, Baihua Zheng

Research Collection School Of Computing and Information Systems

Time-varying dynamic Bayesian network (TVDBN) is essential for describing time-evolving directed conditional dependence structures in complex multivariate systems. In this article, we construct a TVDBN model, together with a score-based method for its structure learning. The model adopts a vector autoregressive (VAR) model to describe inter-slice and intra-slice relations between variables. By allowing VAR parameters to change segment-wisely over time, the time-varying dynamics of the network structure can be described. Furthermore, considering some external information can provide additional similarity information of variables. Graph Laplacian is further imposed to regularize similar nodes to have similar network structures. The regularized maximum a …


Which Neural Network Makes More Explainable Decisions? An Approach Towards Measuring Explainability, Mengdi Zhang, Jun Sun, Jingyi Wang Nov 2022

Which Neural Network Makes More Explainable Decisions? An Approach Towards Measuring Explainability, Mengdi Zhang, Jun Sun, Jingyi Wang

Research Collection School Of Computing and Information Systems

Neural networks are getting increasingly popular thanks to their exceptional performance in solving many real-world problems. At the same time, they are shown to be vulnerable to attacks, difficult to debug and subject to fairness issues. To improve people’s trust in the technology, it is often necessary to provide some human-understandable explanation of neural networks’ decisions, e.g., why is that my loan application is rejected whereas hers is approved? That is, the stakeholder would be interested to minimize the chances of not being able to explain the decision consistently and would like to know how often and how easy it …


Qvip: An Ilp-Based Formal Verification Approach For Quantized Neural Networks, Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, Jun Sun Oct 2022

Qvip: An Ilp-Based Formal Verification Approach For Quantized Neural Networks, Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, Jun Sun

Research Collection School Of Computing and Information Systems

Deep learning has become a promising programming paradigm in software development, owing to its surprising performance in solving many challenging tasks. Deep neural networks (DNNs) are increasingly being deployed in practice, but are limited on resource-constrained devices owing to their demand for computational power. Quantization has emerged as a promising technique to reduce the size of DNNs with comparable accuracy as their floating-point numbered counterparts. The resulting quantized neural networks (QNNs) can be implemented energy-efficiently. Similar to their floating-point numbered counterparts, quality assurance techniques for QNNs, such as testing and formal verification, are essential but are currently less explored. In …


Stitching Weight-Shared Deep Neural Networks For Efficient Multitask Inference On Gpu, Zeyu Wang, Xiaoxi He, Zimu Zhou, Xu Wang, Qiang Ma, Xin Miao, Zhuo Liu, Lothar Thiele, Zheng. Yang Oct 2022

Stitching Weight-Shared Deep Neural Networks For Efficient Multitask Inference On Gpu, Zeyu Wang, Xiaoxi He, Zimu Zhou, Xu Wang, Qiang Ma, Xin Miao, Zhuo Liu, Lothar Thiele, Zheng. Yang

Research Collection School Of Computing and Information Systems

Intelligent personal and home applications demand multiple deep neural networks (DNNs) running on resourceconstrained platforms for compound inference tasks, known as multitask inference. To fit multiple DNNs into low-resource devices, emerging techniques resort to weight sharing among DNNs to reduce their storage. However, such reduction in storage fails to translate into efficient execution on common accelerators such as GPUs. Most DNN graph rewriters are blind for multiDNN optimization, while GPU vendors provide inefficient APIs for parallel multi-DNN execution at runtime. A few prior graph rewriters suggest cross-model graph fusion for low-latency multiDNN execution. Yet they request duplication of the shared …


Explanation Guided Contrastive Learning For Sequential Recommendation, Lei Wang, Ee-Peng Lim, Zhiwei Liu, Tianxiang Zhao Oct 2022

Explanation Guided Contrastive Learning For Sequential Recommendation, Lei Wang, Ee-Peng Lim, Zhiwei Liu, Tianxiang Zhao

Research Collection Lee Kong Chian School Of Business

Recently, contrastive learning has been applied to the sequential recommendation task to address data sparsity caused by users with few item interactions and items with few user adoptions. Nevertheless, the existing contrastive learning-based methods fail to ensure that the positive (or negative) sequence obtained by some random augmentation (or sequence sampling) on a given anchor user sequence remains to be semantically similar (or different). When the positive and negative sequences turn out to be false positive and false negative respectively, it may lead to degraded recommendation performance. In this work, we address the above problem by proposing Explanation Guided Augmentations …


Exploring Artificial Intelligence (Ai) Techniques For Forecasting Network Traffic: Network Qos And Security Perspectives, Ibrahim Mohammed Sayem Aug 2022

Exploring Artificial Intelligence (Ai) Techniques For Forecasting Network Traffic: Network Qos And Security Perspectives, Ibrahim Mohammed Sayem

Electronic Thesis and Dissertation Repository

This thesis identifies the research gaps in the field of network intrusion detection and network QoS prediction, and proposes novel solutions to address these challenges. Our first topic presents a novel network intrusion detection system using a stacking ensemble technique using UNSW-15 and CICIDS-2017 datasets. In contrast to earlier research, our proposed novel network intrusion detection techniques not only determine if the network traffic is benign or normal, but also reveal the type of assault in the flow. Our proposed stacking ensemble model provides a more effective detection capability than the existing works. Our proposed stacking ensemble technique can detect …


Holistic Performance Analysis And Optimization Of Unified Virtual Memory, Tyler Allen Aug 2022

Holistic Performance Analysis And Optimization Of Unified Virtual Memory, Tyler Allen

All Dissertations

The programming difficulty of creating GPU-accelerated high performance computing (HPC) codes has been greatly reduced by the advent of Unified Memory technologies that abstract the management of physical memory away from the developer. However, these systems incur substantial overhead that paradoxically grows for codes where these technologies are most useful. While these technologies are increasingly adopted for use in modern HPC frameworks and applications, the performance cost reduces the efficiency of these systems and turns away some developers from adoption entirely. These systems are naturally difficult to optimize due to the large number of interconnected hardware and software components that …


Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt Aug 2022

Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt

Electronic Theses and Dissertations

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag …


Self-Checking Deep Neural Networks For Anomalies And Adversaries In Deployment, Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S. Rosenblum, Jin Song Dong Aug 2022

Self-Checking Deep Neural Networks For Anomalies And Adversaries In Deployment, Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S. Rosenblum, Jin Song Dong

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely adopted, yet DNN models are surprisingly unreliable, which raises significant concerns about their use in critical domains. In this work, we propose that runtime DNN mistakes can be quickly detected and properly dealt with in deployment, especially in settings like self-driving vehicles. Just as software engineering (SE) community has developed effective mechanisms and techniques to monitor and check programmed components, our previous work, SelfChecker, is designed to monitor and correct DNN predictions given unintended abnormal test data. SelfChecker triggers an alarm if the decisions given by the internal layer features of the model …


Verifying Neural Networks Against Backdoor Attacks, Pham Hong Long, Jun Sun Aug 2022

Verifying Neural Networks Against Backdoor Attacks, Pham Hong Long, Jun Sun

Research Collection School Of Computing and Information Systems

Neural networks have achieved state-of-the-art performance in solving many problems, including many applications in safety/security-critical systems. Researchers also discovered multiple security issues associated with neural networks. One of them is backdoor attacks, i.e., a neural network may be embedded with a backdoor such that a target output is almost always generated in the presence of a trigger. Existing defense approaches mostly focus on detecting whether a neural network is ‘backdoored’ based on heuristics, e.g., activation patterns. To the best of our knowledge, the only line of work which certifies the absence of backdoor is based on randomized smoothing, which is …


Developing Intelligent Routing Algorithm Over Sdn: Reusable Reinforcement Learning Approach, Wumian Wang Jul 2022

Developing Intelligent Routing Algorithm Over Sdn: Reusable Reinforcement Learning Approach, Wumian Wang

Electronic Thesis and Dissertation Repository

Traffic routing is vital for the proper functioning of the Internet. As users and network traffic increase, researchers try to develop adaptive and intelligent routing algorithms that can fulfill various QoS requirements. Reinforcement Learning (RL) based routing algorithms have shown better performance than traditional approaches. We developed a QoS-aware, reusable RL routing algorithm, RLSR-Routing over SDN. During the learning process, our algorithm ensures loop-free path exploration. While finding the path for one traffic demand (a source destination pair with certain amount of traffic), RLSR-Routing learns the overall network QoS status, which can be used to speed up algorithm convergence when …


Are You Really Muted?: A Privacy Analysis Of Mute Buttons In Video Conferencing Apps, Yucheng Yang, Jack West, George K. Thiruvathukal, Neil Klingensmith, Kassem Fawaz Jul 2022

Are You Really Muted?: A Privacy Analysis Of Mute Buttons In Video Conferencing Apps, Yucheng Yang, Jack West, George K. Thiruvathukal, Neil Klingensmith, Kassem Fawaz

Computer Science: Faculty Publications and Other Works

In the post-pandemic era, video conferencing apps (VCAs) have converted previously private spaces — bedrooms, living rooms, and kitchens — into semi-public extensions of the office. And for the most part, users have accepted these apps in their personal space, without much thought about the permission models that govern the use of their personal data during meetings. While access to a device’s video camera is carefully controlled, little has been done to ensure the same level of privacy for accessing the microphone. In this work, we ask the question: what happens to the microphone data when a user clicks the …


Data-Driven Retail Decision-Making Using Spatial Partitioning And Delineation Of Communities, Ming Hui Tan, Kar Way Tan Jul 2022

Data-Driven Retail Decision-Making Using Spatial Partitioning And Delineation Of Communities, Ming Hui Tan, Kar Way Tan

Research Collection School Of Computing and Information Systems

Urbanisation is resulting in rapid growth in road networks within cities. The evolution of road networks can be indicative of a city's economic growth and it is a field of research gaining prominence in recent years. This paper proposes a framework for spatial partition of large scale road networks that produces appropriately sized geospatial units in order to identify the type of community they serve. To this end, we have developed a three-stage procedure which first partitions the road network using Louvain method, followed by outlining the boundary of each partition using Uber H3 grids before classifying each partition using …


Npc: Neuron Path Coverage Via Characterizing Decision Logic Of Deep Neural Networks, Xiaofei Xie, Tianlin Li, Jian Wang, Lei Ma, Qing Guo, Felix Juefei-Xu, Yang Liu Jul 2022

Npc: Neuron Path Coverage Via Characterizing Decision Logic Of Deep Neural Networks, Xiaofei Xie, Tianlin Li, Jian Wang, Lei Ma, Qing Guo, Felix Juefei-Xu, Yang Liu

Research Collection School Of Computing and Information Systems

Deep learning has recently been widely applied to many applications across different domains, e.g., image classification and audio recognition. However, the quality of Deep Neural Networks (DNNs) still raises concerns in the practical operational environment, which calls for systematic testing, especially in safety-critical scenarios. Inspired by software testing, a number of structural coverage criteria are designed and proposed to measure the test adequacy of DNNs. However, due to the blackbox nature of DNN, the existing structural coverage criteria are difficult to interpret, making it hard to understand the underlying principles of these criteria. The relationship between the structural coverage and …


Hakg: Hierarchy-Aware Knowledge Gated Network For Recommendation, Yuntao Du, Xinjun Zhu, Lu Chen, Baihua Zheng, Yunjun Gao Jul 2022

Hakg: Hierarchy-Aware Knowledge Gated Network For Recommendation, Yuntao Du, Xinjun Zhu, Lu Chen, Baihua Zheng, Yunjun Gao

Research Collection School Of Computing and Information Systems

Knowledge graph (KG) plays an increasingly important role to improve the recommendation performance and interpretability. A recent technical trend is to design end-to-end models based on information propagation mechanism. However, existing propagationbased methods fail to (1) model the underlying hierarchical structures and relations, and (2) capture the high-order collaborative signals of items for learning high-quality user and item representations. In this paper, we propose a new model, called Hierarchy-Aware Knowledge Gated Network (HAKG), to tackle the aforementioned problems. Technically, we model users and items (that are captured by a user-item graph), as well as entities and relations (that are captured …


A3gan: Attribute-Aware Anonymization Networks For Face De-Identification, Liming Zhai, Qing Guo, Xiaofei Xie, Lei Ma, Yi Estelle Wang, Yang Liu Jul 2022

A3gan: Attribute-Aware Anonymization Networks For Face De-Identification, Liming Zhai, Qing Guo, Xiaofei Xie, Lei Ma, Yi Estelle Wang, Yang Liu

Research Collection School Of Computing and Information Systems

Face de-identification (De-ID) removes face identity information in face images to avoid personal privacy leakage. Existing face De-ID breaks the raw identity by cutting out the face regions and recovering the corrupted regions via deep generators, which inevitably affect the generation quality and cannot control generation results according to subsequent intelligent tasks (e.g., facial expression recognition). In this work, for the first attempt, we think the face De-ID from the perspective of attribute editing and propose an attribute-aware anonymization network (A3GAN) by formulating face De-ID as a joint task of semantic suppression and controllable attribute injection. Intuitively, the semantic suppression …


Enhancing Security Patch Identification By Capturing Structures In Commits, Bozhi Wu, Shangqing Liu, Ruitao Feng, Xiaofei Xie, Jingkai Siow, Shang-Wei Lin Jul 2022

Enhancing Security Patch Identification By Capturing Structures In Commits, Bozhi Wu, Shangqing Liu, Ruitao Feng, Xiaofei Xie, Jingkai Siow, Shang-Wei Lin

Research Collection School Of Computing and Information Systems

With the rapid increasing number of open source software (OSS), the majority of the software vulnerabilities in the open source components are fixed silently, which leads to the deployed software that integrated them being unable to get a timely update. Hence, it is critical to design a security patch identification system to ensure the security of the utilized software. However, most of the existing works for security patch identification just consider the changed code and the commit message of a commit as a flat sequence of tokens with simple neural networks to learn its semantics, while the structure information is …


Measuring Network Interference And Mitigating It With Dns Encryption, Seyed Arian Akhavan Niaki Jun 2022

Measuring Network Interference And Mitigating It With Dns Encryption, Seyed Arian Akhavan Niaki

Doctoral Dissertations

The Internet has emerged as one of the most important tools of communication. With around 4.5 billion active users as of July 2020, it provides people the opportunity to access a vast treasure trove of information and express their opinions online. How- ever, some countries consider the Internet as a critical communication medium and attempt to deploy network interference strategies. National governments, in particular, are notorious for their attempts to impose restrictions on online communication. Further, certain Internet service providers (ISPs) have been known to throttle specific applications and violate net neutrality principles.

Alongside the proliferation of network interference and …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Torsh: Obfuscating Consumer Internet-Of-Things Traffic With A Collaborative Smart-Home Router Network, Adam Vandenbussche Jun 2022

Torsh: Obfuscating Consumer Internet-Of-Things Traffic With A Collaborative Smart-Home Router Network, Adam Vandenbussche

Dartmouth College Undergraduate Theses

When consumers install Internet-connected "smart devices" in their homes, metadata arising from the communications between these devices and their cloud-based service providers enables adversaries privy to this traffic to profile users, even when adequate encryption is used. Internet service providers (ISPs) are one potential adversary privy to users’ incom- ing and outgoing Internet traffic and either currently use this insight to assemble and sell consumer advertising profiles or may in the future do so. With existing defenses against such profiling falling short of meeting user preferences and abilities, there is a need for a novel solution that empowers consumers to …


Coded Distributed Function Computation, Pedro J. Soto Jun 2022

Coded Distributed Function Computation, Pedro J. Soto

Dissertations, Theses, and Capstone Projects

A ubiquitous problem in computer science research is the optimization of computation on large data sets. Such computations are usually too large to be performed on one machine and therefore the task needs to be distributed amongst a network of machines. However, a common problem within distributed computing is the mitigation of delays caused by faulty machines. This can be performed by the use of coding theory to optimize the amount of redundancy needed to handle such faults. This problem differs from classical coding theory since it is concerned with the dynamic coded computation on data rather than just statically …


Privacy Assessment Breakthrough: A Design Science Approach To Creating A Unified Methodology, Lisa Mckee May 2022

Privacy Assessment Breakthrough: A Design Science Approach To Creating A Unified Methodology, Lisa Mckee

Masters Theses & Doctoral Dissertations

Recent changes have increased the need for and awareness of privacy assessments. Organizations focus primarily on Privacy Impact Assessments (PIA) and Data Protection Impact Assessments (DPIA) but rarely take a comprehensive approach to assessments or integrate the results into a privacy risk program. There are numerous industry standards and regulations for privacy assessments, but the industry lacks a simple unified methodology with steps to perform privacy assessments. The objectives of this research project are to create a new privacy assessment methodology model using the design science methodology, update industry standards and present training for conducting privacy assessments that can be …


A Dark Web Pharma Framework For A More Efficient Investigation Of Dark Web Covid-19 Vaccine Products., Francisca Afua Opoku-Boateng May 2022

A Dark Web Pharma Framework For A More Efficient Investigation Of Dark Web Covid-19 Vaccine Products., Francisca Afua Opoku-Boateng

Masters Theses & Doctoral Dissertations

Globally, as the COVID-19 pandemic persists, it has not just imposed a significant impact on the general well-being of individuals, exposing them to unprecedented financial hardships and online information deception. However, it has also forced consumers, buyers, and suppliers to look toward a darkened economic world – the Dark Web world – a sinister complement to the internet, driven by financial gains, where illegal goods and services are advertised sold. As the Dark Web gains an increase in recognition by normal web users during this pandemic, how to perform cybercrime investigations on the Dark Web becomes challenging for manufacturers, investigators, …


Two Project On Information Systems Capabilities And Organizational Performance, Giridhar Reddy Bojja May 2022

Two Project On Information Systems Capabilities And Organizational Performance, Giridhar Reddy Bojja

Masters Theses & Doctoral Dissertations

Information systems (IS), as a multi-disciplinary research area, emphasizes the complementary relationship between people, organizations, and technology and has evolved dramatically over the years. IS and the underlying Information Technology (IT) application and research play a crucial role in transforming the business world and research within the management domain. Consistent with this evolution and transformation, I develop a two-project dissertation on Information systems capabilities and organizational outcomes.

Project 1 examines the role of hospital operational effectiveness on the link between information systems capabilities and hospital performance. This project examines the cross-lagged effects on a sample of 217 hospitals measured over …


A Machine Learning Approach For Reconnaissance Detection To Enhance Network Security, Rachel Bakaletz May 2022

A Machine Learning Approach For Reconnaissance Detection To Enhance Network Security, Rachel Bakaletz

Electronic Theses and Dissertations

Before cyber-crime can happen, attackers must research the targeted organization to collect vital information about the target and pave the way for the subsequent attack phases. This cyber-attack phase is called reconnaissance or enumeration. This malicious phase allows attackers to discover information about a target to be leveraged and used in an exploit. Information such as the version of the operating system and installed applications, open ports can be detected using various tools during the reconnaissance phase. By knowing such information cyber attackers can exploit vulnerabilities that are often unique to a specific version.

In this work, we develop an …


Guided Attention Multimodal Multitask Financial Forecasting With Inter-Company Relationships And Global And Local News, Meng Kiat Gary Ang, Ee-Peng Lim May 2022

Guided Attention Multimodal Multitask Financial Forecasting With Inter-Company Relationships And Global And Local News, Meng Kiat Gary Ang, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Most works on financial forecasting use information directly associated with individual companies (e.g., stock prices, news on the company) to predict stock returns for trading. We refer to such company-specific information as local information. Stock returns may also be influenced by global information (e.g., news on the economy in general), and inter-company relationships. Capturing such diverse information is challenging due to the low signal-to-noise ratios, different time-scales, sparsity and distributions of global and local information from different modalities. In this paper, we propose a model that captures both global and local multimodal information for investment and risk management-related forecasting tasks. …


Learning Semantically Rich Network-Based Multi-Modal Mobile User Interface Embeddings, Meng Kiat Gary Ang, Ee-Peng Lim May 2022

Learning Semantically Rich Network-Based Multi-Modal Mobile User Interface Embeddings, Meng Kiat Gary Ang, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Semantically rich information from multiple modalities - text, code, images, categorical and numerical data - co-exist in the user interface (UI) design of mobile applications. Moreover, each UI design is composed of inter-linked UI entities which support different functions of an application, e.g., a UI screen comprising a UI taskbar, a menu and multiple button elements. Existing UI representation learning methods unfortunately are not designed to capture multi-modal and linkage structure between UI entities. To support effective search and recommendation applications over mobile UIs, we need UI representations that integrate latent semantics present in both multi-modal information and linkages between …


Neighbor-Anchoring Adversarial Graph Neural Networks (Extended Abstract), Zemin Liu, Yuan Fang, Yong Liu, Vincent W. Zheng May 2022

Neighbor-Anchoring Adversarial Graph Neural Networks (Extended Abstract), Zemin Liu, Yuan Fang, Yong Liu, Vincent W. Zheng

Research Collection School Of Computing and Information Systems

While graph neural networks (GNNs) exhibit strong discriminative power, they often fall short of learning the underlying node distribution for increased robustness. To deal with this, inspired by generative adversarial networks (GANs), we investigate the problem of adversarial learning on graph neural networks, and propose a novel framework named NAGNN (i.e., Neighbor-anchoring Adversarial Graph Neural Networks) for graph representation learning, which trains not only a discriminator but also a generator that compete with each other. In particular, we propose a novel neighbor-anchoring strategy, where the generator produces samples with explicit features and neighborhood structures anchored on a reference real node, …


Topic-Guided Conversational Recommender In Multiple Domains, Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang, Tat-Seng Chua May 2022

Topic-Guided Conversational Recommender In Multiple Domains, Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang, Tat-Seng Chua

Research Collection School Of Computing and Information Systems

Conversational systems have recently attracted significant attention. Both the research community and industry believe that it will exert huge impact on human-computer interaction, and specifically, the IR/RecSys community has begun to explore Conversational Recommendation. In real-life scenarios, such systems are often urgently needed in helping users accomplishing different tasks under various situations. However, existing works still face several shortcomings: (1) Most efforts are largely confined in single task setting. They fall short of hands in handling tasks across domains. (2) Aside from soliciting user preference from dialogue history, a conversational recommender naturally has access to the back-end data structure which …