Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

6,120 Full-Text Articles 14,546 Authors 373,058 Downloads 172 Institutions

All Articles in Astrophysics and Astronomy

Faceted Search

6,120 full-text articles. Page 3 of 184.

The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter G. van Dokkum, Charlie Conroy, Alexa Villaume, Duncan A. Forbes, Jay Strader, Adebusola B. Alabi, Sabine Bellstedt 2018 University of California, Santa Cruz

The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter G. Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan A. Forbes, Jay Strader, Adebusola B. Alabi, Sabine Bellstedt

Aaron J. Romanowsky

We investigate the dark matter density profile of the massive elliptical galaxy, NGC 1407, by constructing spherically symmetric Jeans models of its field star and globular cluster systems. Two major challenges in such models are the degeneracy between the stellar mass and the dark matter halo profiles, and the degeneracy between the orbital anisotropy of the tracer population and the total mass causing the observed motions. We address the first issue by using new measurements of the mass-to-light ratio profile from stellar population constraints that include a radially varying initial mass function. To mitigate the mass–anisotropy degeneracy, we make ...


Astromimetics: The Dawn Of A New Era For (Bio)Materials Science?, Vuk Uskoković, Victoria M. Wu 2018 Chapman University

Astromimetics: The Dawn Of A New Era For (Bio)Materials Science?, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Composite, multifunctional fine particles are likely to be at the frontier of materials science in the foreseeable future. Here we present a submicron composite particle that mimics the stratified structure of the Earth by having a zero-valent iron core, a silicate/silicide mantle, and a thin carbonaceous crust resembling the biosphere and its biotic deposits. Particles were formulated in a stable colloidal form and made to interact with various types of healthy and cancer cells in vitro. A selective anticancer activity was observed, promising from the point of view of the intended use of the particles for tumor targeting across ...


Simulation Of Black Hole Inner Accretion Disk-Corona And Optimization Of The Hard X-Ray Polarimeter, X-Calibur, Banafsheh Beheshtipour 2018 Washington University in St. Louis

Simulation Of Black Hole Inner Accretion Disk-Corona And Optimization Of The Hard X-Ray Polarimeter, X-Calibur, Banafsheh Beheshtipour

Arts & Sciences Electronic Theses and Dissertations

Mass accreting stellar mass and supermassive black holes are strong sources of X-rays. The X- ray observations enable studies of the process of black hole accretion and give us information about the spacetime background. In the framework of my thesis work, I have continued the development of a general-relativistic ray-tracing code enabling the simulation of the Comptonization of photons in the hot accretion disk corona. I use the code to investigate the impact of various approximation schemes for modeling the Comptonization finding that a fully relativistic treatment is needed for accurate predictions in the soft and hard X- ray regimes ...


Ttv-Determined Masses For Warm Jupiters And Their Close Planetary Companions, Dong-Hong Wu, Songhu Wang, Ji-Lin Zhou, Jason H. Steffen, Gregory Laughlin 2018 Nanjing University; University of Nevada, Las Vegas

Ttv-Determined Masses For Warm Jupiters And Their Close Planetary Companions, Dong-Hong Wu, Songhu Wang, Ji-Lin Zhou, Jason H. Steffen, Gregory Laughlin

Physics & Astronomy Faculty Publications

Although the formation and the properties of hot Jupiters (with orbital periods P < 10 days) have attracted a great deal of attention, the origins of warm Jupiters (10 < P < 100 days) are less well studied. Using a transit timing analysis, we present the orbital parameters of five planetary systems containing warm Jupiters, Kepler 30, Kepler 117, Kepler 302, Kepler 487, and Kepler 418. Three of them, Kepler-30 c(M p = 549.4 ± 5.6 M ⊕), Kepler-117 c(M p = 702 ± 63 M ⊕), and Kepler 302 c(M p = 933 ± 527 M ⊕), are confirmed to be real warm Jupiters based on their mass. Insights drawn from the radius–temperature relationship lead to the inference that hot Jupiters and warm Jupiters can be roughly separated by T eff,c = 1123.7 ± 3.3 K. Also, T eff,c provides a good separation for Jupiters with companion fraction consistent with zero (T eff > T eff,c) and those with companion fraction significantly different from zero (T eff < T eff,c).


A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli 2018 University of California, Santa Cruz

A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli

Faculty Publications

The discovery of the ultra-diffuse galaxy NGC 1052-DF2 and its peculiar population of star clusters has raised new questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation. In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large central density core. Better fits are ...


A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli 2018 University of California, Santa Cruz

A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli

Aaron J. Romanowsky

The discovery of the ultra-diffuse galaxy NGC 1052-DF2 and its peculiar population of star clusters has raised new questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation. In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large central density core. Better fits are ...


Circumbinary Discs Around Merging Stellar-Mass Black Holes, Rebecca G. Martin, Chris Nixon, Fu-Guo Xie, Andrew King 2018 University of Nevada, Las Vegas

Circumbinary Discs Around Merging Stellar-Mass Black Holes, Rebecca G. Martin, Chris Nixon, Fu-Guo Xie, Andrew King

Physics & Astronomy Faculty Publications

A circumbinary disc around a pair of merging stellar-mass black holes may be shocked and heated during the recoil of the merged hole, causing a near-simultaneous electromagnetic counterpart to the gravitational wave event. The shocks occur around the recoil radius, where the disc orbital velocity is equal to the recoil velocity. The amount of mass present near this radius at the time of the merger is critical in determining how much radiation is released. We explore the evolution of a circumbinary disc in two limits. First, we consider an accretion disc that feels no torque from the binary. The disc ...


Characteristics Of Two-Episode Emission Patterns In Fermi Long Gamma-Ray Bursts, Lin Lan, Hou-Jun Lü, Shu-Qing Zhong, Hai-Ming Zhang, Jared Rice, Ji-Gui Cheng, Shen-Shi Du, Long Li, Jie Lin, Rui-Jing Lu, En-Wei Liang 2018 Guangxi University

Characteristics Of Two-Episode Emission Patterns In Fermi Long Gamma-Ray Bursts, Lin Lan, Hou-Jun Lü, Shu-Qing Zhong, Hai-Ming Zhang, Jared Rice, Ji-Gui Cheng, Shen-Shi Du, Long Li, Jie Lin, Rui-Jing Lu, En-Wei Liang

Physics & Astronomy Faculty Publications

Two-episode emission components separated by quiescent gaps in the prompt emission of gamma-ray bursts (GRBs) have been observed in the Swift era, but there is a lack of spectral information due to the narrow energy band of the Swift/Burst Alert Telescope. In this paper, a systematic analysis of the spectral and temporal properties of the prompt emission of 101 Fermi/Gamma-ray Burst Monitor detected long GRBs show the existence of two-episode emission components in the light curves, with quiescent times of up to hundreds of seconds. We focus on investigating the differences of those two emission episodes. We find ...


Erratum: The Sluggs Survey: A Comparison Of Total-Mass Profiles Of Early-Type Galaxies From Observations And Cosmological Simulations, To ∼4 Effective Radii, Sabine Bellstedt, Duncan Forbes, Aaron Romanowsky, Rhea-Silvia Remus, Adam Stevens, Jean Brodie, Adriano Poci, Richard McDermid, Adebusola Alabi, Leonie Chevalier, Caitlin Adams, Anna Ferré-Mateu, Asher Wasserman, Viraj Pandya 2018 Swinburne University of Technology

Erratum: The Sluggs Survey: A Comparison Of Total-Mass Profiles Of Early-Type Galaxies From Observations And Cosmological Simulations, To ∼4 Effective Radii, Sabine Bellstedt, Duncan Forbes, Aaron Romanowsky, Rhea-Silvia Remus, Adam Stevens, Jean Brodie, Adriano Poci, Richard Mcdermid, Adebusola Alabi, Leonie Chevalier, Caitlin Adams, Anna Ferré-Mateu, Asher Wasserman, Viraj Pandya

Faculty Publications

This is an erratum to the paper “The SLUGGS Survey: A comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ∼4 effective radii” that was published in 2018, MNRAS, 476, 4543, which we refer to as the original paper.


Polarized Bow Shock Nebulae Reveal Features Of The Winds And Environments Of Massive Stars, Manisha Shrestha 2018 University of Denver

Polarized Bow Shock Nebulae Reveal Features Of The Winds And Environments Of Massive Stars, Manisha Shrestha

Electronic Theses and Dissertations

Massive stars strongly affect their surroundings through their energetic stellar winds during their lifetime and through their energetic deaths as supernovae. When a stellar wind interacts with the local interstellar medium (ISM), if the relative velocity between wind and ISM is supersonic, then a stellar wind bow shock is formed. Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics of the local medium. Since bow shock nebulae are aspherical structures, light scattering within ...


Strong Evidence For The Density-Wave Theory Of Spiral Structure From A Multi-Wavelength Study Of Disk Galaxies, Hamed Pour-Imani 2018 University of Arkansas, Fayetteville

Strong Evidence For The Density-Wave Theory Of Spiral Structure From A Multi-Wavelength Study Of Disk Galaxies, Hamed Pour-Imani

Theses and Dissertations

The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C. Lin and F. Shu (Lin & Shu, 1964; Bertin & Lin, 1996; Shu, 2016), continues to be challenged by rival theories, such as the manifold theory. One test of these theories which has been proposed is that the pitch angle of spiral arms for galaxies should vary with the wavelength of the image in the density-wave theory, but not in the manifold theory. The reason is that stars are born in the density wave but move out of it as they age. In this dissertation, I combined large ...


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen 2018 University of Louisville

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...


First Measurement Of Ξ− Polarization In Photoproduction, J. Bono, L. Guo, K. P. Adhikari, M. J. Amaryan, G. Charles, G. Gavalian, M. Khachatryan, A. Klein, Y. Prok, J. Zhang, Z. W. Zhao 2018 Old Dominion University

First Measurement Of Ξ− Polarization In Photoproduction, J. Bono, L. Guo, K. P. Adhikari, M. J. Amaryan, G. Charles, G. Gavalian, M. Khachatryan, A. Klein, Y. Prok, J. Zhang, Z. W. Zhao

Physics Faculty Publications

Despite decades of studies of the photoproduction of hyperons, both their production mechanisms and their spectra of excited states are still largely unknown. While the parity-violating weak decay of hyperons offers a means of measuring their polarization, which could help discern their production mechanisms and identify their excitation spectra, no such study has been possible for doubly strange baryons in photoproduction, due to low production cross sections. However, by making use of the reaction γ p → K+K+Ξ−, we have measured, for the first time, the induced polarization, P, and the transferred polarization from circularly polarized real photons, characterized ...


Erratum: The Sluggs Survey: A Comparison Of Total-Mass Profiles Of Early-Type Galaxies From Observations And Cosmological Simulations, To ∼4 Effective Radii, Sabine Bellstedt, Duncan A. Forbes, Aaron J. Romanowsky, Rhea-Silvia Remus, Adam R H Stevens, Jean P. Brodie, Adriano Poci, Richard McDermid, Adebusola B. Alabi, Leonie Chevalier, Caitlin Adams, Anna Ferré-Mateu, Asher Wasserman, Viraj Pandya 2018 Swinburne University of Technology

Erratum: The Sluggs Survey: A Comparison Of Total-Mass Profiles Of Early-Type Galaxies From Observations And Cosmological Simulations, To ∼4 Effective Radii, Sabine Bellstedt, Duncan A. Forbes, Aaron J. Romanowsky, Rhea-Silvia Remus, Adam R H Stevens, Jean P. Brodie, Adriano Poci, Richard Mcdermid, Adebusola B. Alabi, Leonie Chevalier, Caitlin Adams, Anna Ferré-Mateu, Asher Wasserman, Viraj Pandya

Aaron J. Romanowsky

This is an erratum to the paper “The SLUGGS Survey: A comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ∼4 effective radii” that was published in 2018, MNRAS, 476, 4543, which we refer to as the original paper.


Gamma-Ray Burst/Supernova Associations: Energy Partition And The Case Of A Magnetar Central Engine, Hon-Jun Lü, Lin Lan, Bing Zhang, En-Wei Liang, David Alexander Kann, Shen-Shi Du, Jun Shen 2018 Guangxi University

Gamma-Ray Burst/Supernova Associations: Energy Partition And The Case Of A Magnetar Central Engine, Hon-Jun Lü, Lin Lan, Bing Zhang, En-Wei Liang, David Alexander Kann, Shen-Shi Du, Jun Shen

Physics & Astronomy Faculty Publications

The favored progenitor model for Gamma-ray Bursts (GRBs) with Supernova (SN) association is the core collapse of massive stars. One possible outcome of such a collapse is a rapidly spinning, strongly magnetized neutron star ("magnetar"). We systematically analyze the multi-wavelength data of GRB/SN associations detected by several instruments before 2017 June. Twenty GRB/SN systems have been confirmed via direct spectroscopic evidence or a clear light curve bump, as well as some spectroscopic evidence resembling a GRB-SN. We derive/collect the basic physical parameters of the GRBs and the SNe, and look for correlations among these parameters. We find ...


Collisional Quenching Of Highly Excited H2 Due To H2 Collisions, Yier Wan, B. H. Yang, P. C. Stancil, Balakrishnan Naduvalath, Nikhil J. Parekh, R. C. Forrey 2018 The University of Georgia

Collisional Quenching Of Highly Excited H2 Due To H2 Collisions, Yier Wan, B. H. Yang, P. C. Stancil, Balakrishnan Naduvalath, Nikhil J. Parekh, R. C. Forrey

Chemistry and Biochemistry Faculty Publications

Rate coefficients for pure rotational quenching in H2(ν 1 = 0, j 1) + H2(ν 2 = 0, j 2) collisions from initial levels of j 1 = 2–31 (j 2 = 0 or 1) to all lower rotational levels are presented. We carried out extensive quantum mechanical close-coupling calculations based on a recently published H2–H2 potential energy surface (PES) developed by Patkowski et al. that has been demonstrated to be more reliable than previous work. Rotational transition cross sections with initial levels of j 1 = 2–14, 18, 19, 24, and 25 were computed for energies ranging from 10−6 ...


The Proposed Origin Of Our Solar System With Planet Migration, Wayne R. Spencer 2018 Cedarville University

The Proposed Origin Of Our Solar System With Planet Migration, Wayne R. Spencer

The Proceedings of the International Conference on Creationism

Two new models to explain the origin and history of our solar system are reviewed from a creation perspective, the Grand Tack model and the Nice model. These new theories propose that the four outer planets formed closer to the Sun, as well as closer together, than today. Then their orbits underwent periods of migration. Theories developed in the research on extrasolar planet systems are today being applied to our own solar system. The new migration models are finding much support from the planetary science community. These new models are summarized and evaluated Biblically and scientifically. Rather than demonstrating how ...


Consistent Young Earth Relativistic Cosmology, Phillip W. Dennis 2018 Unaffiliated

Consistent Young Earth Relativistic Cosmology, Phillip W. Dennis

The Proceedings of the International Conference on Creationism

We present a young earth creationist (YEC) model of creation that is consistent with distant light from distant objects in the cosmos. We discuss the reality of time from theological/philosophical foundations. This results in the rejection of the idealist viewpoint of relativity and the recognition of the reality of the flow of time and the existence of a single cosmological “now.” We begin the construction of the YEC cosmology with an examination of the “chronological enigmas” of the inhomogeneous solutions of the Einstein field equations (EFE) of General Relativity (GR). For this analysis we construct an inhomogeneous model by ...


The Current State Of Creation Astronomy Ii, Danny R. Faulkner 2018 Answers in Genesis

The Current State Of Creation Astronomy Ii, Danny R. Faulkner

The Proceedings of the International Conference on Creationism

It has been nearly twenty years since the previous review of the state of creation astronomy. Since then, much progress has occurred in developing a creation model of astronomy, and some of the recommendations of that earlier review have been carried out. Both the number of papers on astronomical topics published in the creation literature and their depth of coverage have increased tremendously. There has been less concern with criticism of evolutionary ideas as creationists have begun to develop their own models of astronomy. While emphasis on indicators of recent origin is not as great as it used to be ...


Finite Element Analysis Of Large Body Deformation Induced By A Catastrophic Near Impact Event, Denver W. Seely, Andrew Bowman, Heechen Cho, Mark Horstemeyer 2018 Mississippi State University

Finite Element Analysis Of Large Body Deformation Induced By A Catastrophic Near Impact Event, Denver W. Seely, Andrew Bowman, Heechen Cho, Mark Horstemeyer

The Proceedings of the International Conference on Creationism

Finite element simulations of near impacts of terrestrial bodies are presented to investigate possible deformation behavior induced by a massive body during the creation week and/or Genesis Flood. Using the universal law of gravitation, a gravitationally loaded objected is subjected to the ‘pull’ of a near passing fly-by object, and the resulting surface deformations are studied. An Internal State Variable (ISV) pressure dependent plasticity model for silicate rocks (Cho et al., 2018) is used to model the deformation behavior and to capture the history effects involved during the complex surface loading/unloading found in a near impact event. The ...


Digital Commons powered by bepress