Open Access. Powered by Scholars. Published by Universities.®

Cosmology, Relativity, and Gravity Commons

Open Access. Powered by Scholars. Published by Universities.®

421 Full-Text Articles 659 Authors 30,781 Downloads 61 Institutions

All Articles in Cosmology, Relativity, and Gravity

Faceted Search

421 full-text articles. Page 1 of 15.

Consistent Young Earth Relativistic Cosmology, Phillip W. Dennis 2018 Unaffiliated

Consistent Young Earth Relativistic Cosmology, Phillip W. Dennis

The Proceedings of the International Conference on Creationism

We present a young earth creationist (YEC) model of creation that is consistent with distant light from distant objects in the cosmos. We discuss the reality of time from theological/philosophical foundations. This results in the rejection of the idealist viewpoint of relativity and the recognition of the reality of the flow of time and the existence of a single cosmological “now.” We begin the construction of the YEC cosmology with an examination of the “chronological enigmas” of the inhomogeneous solutions of the Einstein field equations (EFE) of General Relativity (GR). For this analysis we construct an inhomogeneous model by ...


How Many Quasars Have Extremely High Velocity Outflows?, Carla P. Quintero, Sean S. Haas, Paola Rodriguez Hidalgo 2018 Humboldt State University

How Many Quasars Have Extremely High Velocity Outflows?, Carla P. Quintero, Sean S. Haas, Paola Rodriguez Hidalgo

IdeaFest: Interdisciplinary Journal of Creative Works and Research from Humboldt State University

No abstract provided.


Searching For A Connection Between Radio Emission And Uv/Optical Absorption In Quasars, Sean S. Haas, Carla P. Quintero, Paola Rodriguez Hidalgo 2018 Humboldt State University

Searching For A Connection Between Radio Emission And Uv/Optical Absorption In Quasars, Sean S. Haas, Carla P. Quintero, Paola Rodriguez Hidalgo

IdeaFest: Interdisciplinary Journal of Creative Works and Research from Humboldt State University

No abstract provided.


Cosmological Distance Measurements With Rotse Supernovae Iip And Observational Systematics On Desi Emission Line Galaxy Clustering, Govinda Dhungana 2018 Southern Methodist University

Cosmological Distance Measurements With Rotse Supernovae Iip And Observational Systematics On Desi Emission Line Galaxy Clustering, Govinda Dhungana

Physics Theses and Dissertations

Both Supernovae (SNe) and Baryon Acoustic Oscillations (BAO) surveys emerged as complementary probes of the expansion history of the universe in the last few decades. SNe Ia cosmology has reached the systematic limits in the optical surveys. The most frequently occuring SNe Type IIP are emerging as equally rich distance probes for the next generation larger surveys. In this thesis, I highlight the astrophysical observables of these events in the context of ROTSE III SN survey and using the ROTSE SNe IIP sample, I present calibration in the framework of expanding photosphere method (EPM) to use them as cosmological distance ...


Gravity Waves Over Antarctica, Vanessa Chambers 2018 Utah State University

Gravity Waves Over Antarctica, Vanessa Chambers

Physics Capstone Project

As part of the international Antarctic Gravity Wave Instrument Network (ANGWIN) program, the Utah State University all sky IR imager has been operated at the British Antarctic Survey (BAS) Halley Station (75°36′ S, 26°12′ W) since 2012, obtaining valuable gravity wave information in the upper mesosphere and lower thermosphere region (~80 to 100 km). In this study, we have utilized a new 3D spectral analysis technique (Matsuda, et al., 2014) to quantify the horizontal phase velocity distributions of gravity waves over Antarctica. This new tool enables us to analyze extensive amounts of airglow imaging data in a relatively ...


Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper 2018 Rowan University

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper

Student Research Symposium Posters

Primordial black holes are thought to have been formed at the early stages of the universe in the presence of non-homogeneous density distributions of dark matter. We are working under the assumption that dark matter consists of elementary low mass particles, specifically, spin 1/2 fermions. We further assume that dark matter is electrically neutral, thus its main interaction is gravitational. We investigate dark matter spin 1/2 fermions in orbit around a black hole atom and consider mass ranges for which the quantum description is appropriate. Solutions to the Dirac equation are utilized to describe the radial mass distribution ...


Does The Black Hole Shadow Probe The Event Horizon Geometry?, Pedro V. P. Cunha, Carlos A. R. Herdeiro, Maria J. Rodriguez 2018 Universidade de Lisboa

Does The Black Hole Shadow Probe The Event Horizon Geometry?, Pedro V. P. Cunha, Carlos A. R. Herdeiro, Maria J. Rodriguez

All Physics Faculty Publications

There is an exciting prospect of obtaining the shadow of astrophysical black holes (BHs) in the near future with the Event Horizon Telescope. As a matter of principle, this justifies asking how much one can learn about the BH horizon itself from such a measurement. Since the shadow is determined by a set of special photon orbits, rather than horizon properties, it is possible that different horizon geometries yield similar shadows. One may then ask how sensitive is the shadow to details of the horizon geometry? As a case study, we consider the double Schwarzschild BH and analyze the impact ...


Gravity Then And Now, Paul Ingraham 2018 Germanna Community College

Gravity Then And Now, Paul Ingraham

Student Writing

This paper discusses the theory of gravity from the time it was discovered by Sir Isaac Newton to present time with the discovery of gravitational waves by Albert Einstein, and the detection of gravitational waves. Stephen Hawking's and Leonard Mlodinow's recent book, The Grand Design, provides support for Edward Witten's M-theory. Gravity was the first of the four fundamental forces to be discovered, and that last to be detected. Einstein proposed that gravity was not only a force, but also could be characterized as a wave on the space-time continuum.


Experimental Investigation Of A New Spiral Wingtip, Naseeb Ahmed Siddiqui, Mohamed Aldeeb, Waqar Asrar, Erwin Sulaeman 2018 International Islamic University - Malaysia

Experimental Investigation Of A New Spiral Wingtip, Naseeb Ahmed Siddiqui, Mohamed Aldeeb, Waqar Asrar, Erwin Sulaeman

International Journal of Aviation, Aeronautics, and Aerospace

Experiments on the relative merits and demerits of slotted wingtips mimicking a bird’s primary feathers have been performed. The real emargination length of feather tips, their flexibility and curved shapes during cruise are considered in the present study. The experiments were performed at a Reynolds number of 3.7 x 105 on a symmetric flat plate half wing of aspect ratio 3. Lift, drag and pitching moments were measured using a six component aerodynamic balance. Four different shapes inspired by bird primary feathers have been analysed. The rigid curved tip performed the best increasing the L/D ratio ...


Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, B. P. Abbott, K. AultONeal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, et al. 2018 California Institute of Technology

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 ...


All-Sky Search For Long-Duration Gravitational Wave Transients In The First Advanced Ligo Observing Run, B. P. Abbott, K. Gill, B. Hughey, J. W. W. Pratt, E. Rhoades, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, et al. 2018 California Institute of Technology

All-Sky Search For Long-Duration Gravitational Wave Transients In The First Advanced Ligo Observing Run, B. P. Abbott, K. Gill, B. Hughey, J. W. W. Pratt, E. Rhoades, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between and , with a total observational time of . The search targets gravitational wave transients of 10–500 s duration in a frequency band of 24–2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the ...


First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. AultONeal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, et al. 2018 California Institute of Technology

First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper ...


Experiments With The Gravitational Constant, Vildyan Yanbikov 2018 Yanbikov Vildyan Shavkyatovich

Experiments With The Gravitational Constant, Vildyan Yanbikov

Vildyan Yanbikov

Описание эксперимента определяющий зависимость гравитационной постоянной массы, центра тяжести и расстояние до этого центра


Finding Gravitationally Lensed Systems In The Vla Stripe 82 Survey, Jacob Isbell 2018 University of Iowa

Finding Gravitationally Lensed Systems In The Vla Stripe 82 Survey, Jacob Isbell

University of Iowa Honors Theses

We describe the selection, observations, and analysis of four potential gravitationally lensed radio active galactic nuclei within the VLA Stripe 82 Survey. Using the Very Large Array, we have obtained high-resolution (0.3'') observations of two of the four candidates. We analyze the source morphology and 5-7GHz spectral index of each source to determine whether the sources are indeed lensed. We find that neither of the observed sources are lensed, and instead they are core-jet systems contained within the host galaxies. The radio complexes at 00:42:31.4-00:43:40.6 and 01:24:55.9+00:11:17 ...


Scalar Field Vacuum Expectation Value Induced By Gravitational Wave Background, Preston Jones, Patrick McDougall, Michael Ragsdale, Douglas Singleton 2018 Embry-Riddle Aeronautical University

Scalar Field Vacuum Expectation Value Induced By Gravitational Wave Background, Preston Jones, Patrick Mcdougall, Michael Ragsdale, Douglas Singleton

Publications

We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.


Technology, Hyperbole, And Irony, Alan G. Gross 2018 university of minnesota- twin cities

Technology, Hyperbole, And Irony, Alan G. Gross

Poroi

Except for metaphor, tropes are arguably irrelevant to the analysis of science and technology. Among tropes, moreover, hyperbole and irony seem particularly ill-suited as the former exaggerates, while the latter undermines, two strategies at odds with a language intent on closely following the contours of the world of experience. While neither hyperbole nor irony has a place in the professional discourses of science and technology, both play a role in their popular representations. Hyperbole expresses our sense that these achievements exemplify the sublime, a form of experience applied at first to feelings of awe generated by great literature, then in ...


Detection Of Extragalactic Magnetic Fields Through Analysis Of Photon Arrival Directions, Omkar H. Ramachandran 2018 University of Colorado, Boulder

Detection Of Extragalactic Magnetic Fields Through Analysis Of Photon Arrival Directions, Omkar H. Ramachandran

Undergraduate Honors Theses

The existence of large-scale extragalactic magnetic fields (EGMFs) has been a subject of some debate over the last few decades. Recent work done on the analysis of cascade photons from high energy sources like Blazars (Tashiro and Vachaspati, 2013; Chen et al., 2015; Tashiro and Vachaspati, 2015) offer an exciting possibility of definitively proving the existence of such fields. In this thesis, the existing analysis of magnetic field measurements via cascade photon correlators will be extended to the most recent repository of data from the Fermi Large Area Telescope. In addition, a new Monte-Carlo routine to account for noise from ...


First Narrow-Band Search For Continuous Gravitational Waves From Known Pulsars In Advanced Detector Data, B. P. Abbott, K. AultONeal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, et al. 2017 California Institute of Technology

First Narrow-Band Search For Continuous Gravitational Waves From Known Pulsars In Advanced Detector Data, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars ...


Gw170608: Observation Of A 19 Solar-Mass Binary Black Hole Coalescence, B. P. Abbott, K. AultONeal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, et al. 2017 California Institute of Technology

Gw170608: Observation Of A 19 Solar-Mass Binary Black Hole Coalescence, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of 12 +7 -2 M⨀ and 7 +2 -2 M⨀ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is ...


First Low-Frequency Einstein@Home All-Sky Search For Continuous Gravitational Waves In Advanced Ligo Data, B. P. Abbott, K. AultONeal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, et al. 2017 California Institute of Technology

First Low-Frequency Einstein@Home All-Sky Search For Continuous Gravitational Waves In Advanced Ligo Data, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of ...


Digital Commons powered by bepress