Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

6,250 Full-Text Articles 14,820 Authors 373,058 Downloads 173 Institutions

All Articles in Astrophysics and Astronomy

Faceted Search

6,250 full-text articles. Page 4 of 189.

From Thermal Dissociation To Condensation In The Atmospheres Of Ultra Hot Jupiters: Wasp-121b In Context, Vivien Parmentier, Mike R. Line, Jacob L. Bean, Megan Mansfield, Laura Kreidberg, Roxana Lupu, Channon Visscher, Jean-Michel Desert, Jonathan J. Fortney, Magalie Deleuil, Jacob Arcangeli, Adam P. Showman, Mark S. Marley 2018 University of Oxford

From Thermal Dissociation To Condensation In The Atmospheres Of Ultra Hot Jupiters: Wasp-121b In Context, Vivien Parmentier, Mike R. Line, Jacob L. Bean, Megan Mansfield, Laura Kreidberg, Roxana Lupu, Channon Visscher, Jean-Michel Desert, Jonathan J. Fortney, Magalie Deleuil, Jacob Arcangeli, Adam P. Showman, Mark S. Marley

Faculty Work Comprehensive List

Context. A new class of exoplanets has emerged: the ultra hot Jupiters, the hottest close-in gas giants. The majority of them have weaker-than-expected spectral features in the 1.1−1.7 μm bandpass probed by HST/WFC3 but stronger spectral features at longer wavelengths probed by Spitzer. This led previous authors to puzzling conclusions about the thermal structures and chemical abundances of these planets.

Aims. We investigate how thermal dissociation, ionization, H− opacity, and clouds shape the thermal structures and spectral properties of ultra hot Jupiters.

Methods. We use the SPARC/MITgcm to model the atmospheres of four ultra ...


Polynomial Fitting, R. Steven Turley 2018 Brigham Young University

Polynomial Fitting, R. Steven Turley

All Faculty Publications

This article reviews the theory and some good practice for fitting polynomials to data. I show by theory and example why fitting using a basis of orthogonal polynomials rather than monomials is desirable. I also show how to scale the independent variable for a more stable fit. I also demonstrate how to compute the uncertainty in the fit parameters. Finally, I discuss regression analysis: how to determine whether adding an additional term to the fit is justified.


Origins Of Ultradiffuse Galaxies In The Coma Cluster – I. Constraints From Velocity Phase Space, Adebusola B. Alabi, Anna Ferré-Mateu, Aaron J. Romanowsky, Jean P. Brodie, Duncan A. Forbes, Asher Wasserman, Sabine Bellstedt, Ignacio Martín-Navarro, Viraj Pandya, Maria B. Stone, Nobuhiro Okabe 2018 University of California Observatories

Origins Of Ultradiffuse Galaxies In The Coma Cluster – I. Constraints From Velocity Phase Space, Adebusola B. Alabi, Anna Ferré-Mateu, Aaron J. Romanowsky, Jean P. Brodie, Duncan A. Forbes, Asher Wasserman, Sabine Bellstedt, Ignacio Martín-Navarro, Viraj Pandya, Maria B. Stone, Nobuhiro Okabe

Aaron J. Romanowsky

We use Keck/DEIMOS spectroscopy to confirm the cluster membership of 16 ultradiffuse galaxies (UDGs) in the Coma cluster, bringing the total number of spectroscopically confirmed UDGs from the Yagi et al. (Y16) catalogue to 25. We also identify a new cluster background UDG, confirming that most (∼95 per cent) of the UDGs in the Y16 catalogue belong to the Coma cluster. In this pilot study of Coma UDGs in velocity phase space, we find evidence of a diverse origin for Coma cluster UDGs, similar to normal dwarf galaxies. Some UDGs in our sample are consistent with being late infalls ...


The Periglacial Landscape Of Mars: Insight Into The 'Decameter-Scale Rimmed Depressions' In Utopia Planitia, Arya Bina 2018 The University of Western Ontario

The Periglacial Landscape Of Mars: Insight Into The 'Decameter-Scale Rimmed Depressions' In Utopia Planitia, Arya Bina

Electronic Thesis and Dissertation Repository

Currently, Mars appears to be in a ‘frozen’ and ‘dry’ state, with the clear majority of the planet’s surface maintaining year-round sub-zero temperatures. However, the discovery of features consistent with landforms found in periglacial environments on Earth, suggests a climate history for Mars that may have involved freeze and thaw cycles. Such landforms include hummocky, polygonised, scalloped, and pitted terrains, as well as ice-rich deposits and gullies, along the mid- to high-latitude bands, typically with no lower than 20o N/S. The detection of near-surface and surface ice via the Phoenix lander, excavation of ice via recent impact cratering ...


Dust Production And Depletion In Evolved Planetary Systems, J. Farihi, Ted von Hippel, Rik van Lieshout, P.W. Cauley, Erik Dennihy, Et al. 2018 University College London

Dust Production And Depletion In Evolved Planetary Systems, J. Farihi, Ted Von Hippel, Rik Van Lieshout, P.W. Cauley, Erik Dennihy, Et Al.

Publications

The infrared dust emission from the white dwarf GD 56 is found to rise and fall by 20 per cent peak-to-peak over 11.2 yr, and is consistent with ongoing dust production and depletion. It is hypothesized that the dust is produced via collisions associated with an evolving dust disc, temporarily increasing the emitting surface of warm debris, and is subsequently destroyed or assimilated within a few years. The variations are consistent with debris that does not change temperature, indicating that dust is produced and depleted within a fixed range of orbital radii. Gas produced in collisions may rapidly re-condense ...


On The Normalized Frb Luminosity Function, Rui Luo, Kejia Lee, Duncan R. Lorimer, Bing Zhang 2018 Peking University

On The Normalized Frb Luminosity Function, Rui Luo, Kejia Lee, Duncan R. Lorimer, Bing Zhang

Physics & Astronomy Faculty Publications

33 fast radio bursts (FRBs) had been detected by 2018 March. Although the sample size is still limited, meaningful statistical studies can already be carried out. The normalized luminosity function places important constraints on the intrinsic power output, sheds light on the origin(s) of FRBs, and can guide future observations. In this paper, we measure the normalized luminosity function of FRBs. Using Bayesian statistics, we can naturally account for a variety of factors such as receiver noise temperature, bandwidth, and source selection criteria. We can also include astronomical systematics, such as host galaxy dispersion measure, FRB local dispersion measure ...


The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter van Dokkum, Shany Danieli, Yotam Cohen, Aaron Romanowsky, Charlie Conroy 2018 Yale University

The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter Van Dokkum, Shany Danieli, Yotam Cohen, Aaron Romanowsky, Charlie Conroy

Faculty Publications

We recently inferred that the galaxy NGC 1052–DF2 has little or no dark matter and a rich system of unusual globular clusters. We assumed that the galaxy is a satellite of the luminous elliptical galaxy NGC 1052 at ≈20 Mpc, on the basis of its surface brightness fluctuations (SBFs) distance of 19.0 ± 1.7 Mpc, its radial velocity of ≈1800 km s−1, and its projected position. Here we analyze the color–magnitude diagram (CMD) of NGC 1052–DF2, following the suggestion by Trujillo et al. that the tip of the red giant branch (TRGB) can be detected ...


Parametric Study Of The Rossby Wave Instability In A Two-Dimensional Barotropic Disk. Ii. Nonlinear Calculations, Tomohiro Ono, Takayuki Muto, Kengo Tomida, Zhaohuan Zhu 2018 Osaka University

Parametric Study Of The Rossby Wave Instability In A Two-Dimensional Barotropic Disk. Ii. Nonlinear Calculations, Tomohiro Ono, Takayuki Muto, Kengo Tomida, Zhaohuan Zhu

Physics & Astronomy Faculty Publications

Vortices in protoplanetary disks have attracted attention since the discovery of lopsided structures. One of the possible mechanisms for producing vortices is the Rossby wave instability (RWI). In our previous work, we have performed detailed linear stability analyses of the RWI with various initial conditions. In this paper, we perform numerical simulations of the vortex formation by the RWI in two-dimensional barotropic disks using the Athena++ code. As initial conditions, we consider axisymmetric disks with a Gaussian surface density bump of various contrasts and half-widths. Perturbations grow as expected from the linear stability analyses in the linear and weakly nonlinear ...


Understanding The Death Of Massive Stars Using An Astrophysical Transients Observatory, Peter W. Roming, Eddie Baron, Amanda J. Bayless, Volker Bromm, Peter J. Brown, Michael W. Davis, Anastasia Fialkov, Brian Fleming, Kevin France, Chris L. Fryer, Thomas K. Greathouse, Jed J. Hancock, D. Andrew Howell, Andrew J. Levan, Abraham Loeb, Raffaella Margutti, Mark L. McConnell, Paul T. O'Brien, Julian P. Osborne, Daniel A. Perley, Eric M. Schlegel, Rhaana L. C. Starling, Nial R. Tanvir, Mark Tapley, Patrick A. Young, Bing Zhang 2018 Southwest Research Institute

Understanding The Death Of Massive Stars Using An Astrophysical Transients Observatory, Peter W. Roming, Eddie Baron, Amanda J. Bayless, Volker Bromm, Peter J. Brown, Michael W. Davis, Anastasia Fialkov, Brian Fleming, Kevin France, Chris L. Fryer, Thomas K. Greathouse, Jed J. Hancock, D. Andrew Howell, Andrew J. Levan, Abraham Loeb, Raffaella Margutti, Mark L. Mcconnell, Paul T. O'Brien, Julian P. Osborne, Daniel A. Perley, Eric M. Schlegel, Rhaana L. C. Starling, Nial R. Tanvir, Mark Tapley, Patrick A. Young, Bing Zhang

Physics & Astronomy Faculty Publications

The death of massive stars, manifested as gamma-ray bursts and core-collapse supernovae, critically influence how the universe formed and evolves. Despite their fundamental importance, our understanding of these enigmatic objects is severely limited. We have performed a concept study of an Astrophysical Transient Observatory (ATO) that will rapidly facilitate an expansion of our understanding of these objects. ATO combines a very wide-field X-ray telescope, a near-infrared telescope, a multi-mode ultraviolet instrument, and a rapidly slewing spacecraft to realize two primary goals: (1) characterize the highest-redshift massive stars and their environments, and (2) constrain the poorly understood explosion mechanism of massive ...


The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter van Dokkum, Shany Danieli, Yotam Cohen, Aaron J. Romanowsky, Charlie Conroy 2018 Yale University

The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter Van Dokkum, Shany Danieli, Yotam Cohen, Aaron J. Romanowsky, Charlie Conroy

Aaron J. Romanowsky

We recently inferred that the galaxy NGC 1052–DF2 has little or no dark matter and a rich system of unusual globular clusters. We assumed that the galaxy is a satellite of the luminous elliptical galaxy NGC 1052 at ≈20 Mpc, on the basis of its surface brightness fluctuations (SBFs) distance of 19.0 ± 1.7 Mpc, its radial velocity of ≈1800 km s−1, and its projected position. Here we analyze the color–magnitude diagram (CMD) of NGC 1052–DF2, following the suggestion by Trujillo et al. that the tip of the red giant branch (TRGB) can be detected ...


Synchrotron Radiation From Electrons With A Pitch-Angle Distribution, Yuan-Pei Yang, Bing Zhang 2018 Chinese Academy of Sciences; University of Nevada, Las Vegas; KIAA-CAS Fellow

Synchrotron Radiation From Electrons With A Pitch-Angle Distribution, Yuan-Pei Yang, Bing Zhang

Physics & Astronomy Faculty Publications

In most astrophysical processes involving synchrotron radiation, the pitch-angle distribution of the electrons is assumed to be isotropic. However, if electrons are accelerated anisotropically, e.g., in a relativistic shock wave with an ordered magnetic field or in magnetic reconnection regions, the electron pitch angles might be anisotropic. In this Letter, we study synchrotron radiation from electrons with a pitch-angle distribution with respect to a large-scale uniform magnetic field. Assuming that the pitch-angle distribution is normal with a scatter of σ p and that the viewing direction is where the pitch-angle direction peaks, we find that for electrons with a ...


Totality In Carbondale, Grant Haynes 2018 Western Michigan University

Totality In Carbondale, Grant Haynes

The Hilltop Review

August 21 was one of the high points of 2017. That day a total solar eclipse tracked over much of the continental U.S. An early morning train ride brought me to Carbondale Illinois, the location of the eclipses longest duration. As totality neared clouds obscured this amazing celestial wonder, but they soon parted, and I was able to get a few spectacular photos of the eclipse, this one with the clouds that almost ruined it, is my favorite.


Warping A Protoplanetary Disc With A Planet On An Inclined Orbit, Rebecca Nealon, Giovanni Dipierro, Richard Alexander, Rebecca G. Martin, Chris Nixon 2018 University of Leicester

Warping A Protoplanetary Disc With A Planet On An Inclined Orbit, Rebecca Nealon, Giovanni Dipierro, Richard Alexander, Rebecca G. Martin, Chris Nixon

Physics & Astronomy Faculty Publications

Recent observations of several protoplanetary discs have found evidence of departures from flat, circular motion in the inner regions of the disc. One possible explanation for these observations is a disc warp, which could be induced by a planet on a misaligned orbit. We present three-dimensional numerical simulations of the tidal interaction between a protoplanetary disc and a misaligned planet. For low planet masses, we show that our simulations accurately model the evolution of inclined planet orbit (up to moderate inclinations). For a planet massive enough to carve a gap, the disc is separated into two components and the gas ...


The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter van Dokkum, Charlie Conroy, Alexa Villaume, Duncan Forbes, Jay Strader, Adebusola Alabi, Sabine Bellstedt 2018 University of California, Santa Cruz

The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan Forbes, Jay Strader, Adebusola Alabi, Sabine Bellstedt

Faculty Publications

We investigate the dark matter density profile of the massive elliptical galaxy, NGC 1407, by constructing spherically symmetric Jeans models of its field star and globular cluster systems. Two major challenges in such models are the degeneracy between the stellar mass and the dark matter halo profiles, and the degeneracy between the orbital anisotropy of the tracer population and the total mass causing the observed motions. We address the first issue by using new measurements of the mass-to-light ratio profile from stellar population constraints that include a radially varying initial mass function. To mitigate the mass–anisotropy degeneracy, we make ...


The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter G. van Dokkum, Charlie Conroy, Alexa Villaume, Duncan A. Forbes, Jay Strader, Adebusola B. Alabi, Sabine Bellstedt 2018 University of California, Santa Cruz

The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter G. Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan A. Forbes, Jay Strader, Adebusola B. Alabi, Sabine Bellstedt

Aaron J. Romanowsky

We investigate the dark matter density profile of the massive elliptical galaxy, NGC 1407, by constructing spherically symmetric Jeans models of its field star and globular cluster systems. Two major challenges in such models are the degeneracy between the stellar mass and the dark matter halo profiles, and the degeneracy between the orbital anisotropy of the tracer population and the total mass causing the observed motions. We address the first issue by using new measurements of the mass-to-light ratio profile from stellar population constraints that include a radially varying initial mass function. To mitigate the mass–anisotropy degeneracy, we make ...


Astromimetics: The Dawn Of A New Era For (Bio)Materials Science?, Vuk Uskoković, Victoria M. Wu 2018 Chapman University

Astromimetics: The Dawn Of A New Era For (Bio)Materials Science?, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Composite, multifunctional fine particles are likely to be at the frontier of materials science in the foreseeable future. Here we present a submicron composite particle that mimics the stratified structure of the Earth by having a zero-valent iron core, a silicate/silicide mantle, and a thin carbonaceous crust resembling the biosphere and its biotic deposits. Particles were formulated in a stable colloidal form and made to interact with various types of healthy and cancer cells in vitro. A selective anticancer activity was observed, promising from the point of view of the intended use of the particles for tumor targeting across ...


Simulation Of Black Hole Inner Accretion Disk-Corona And Optimization Of The Hard X-Ray Polarimeter, X-Calibur, Banafsheh Beheshtipour 2018 Washington University in St. Louis

Simulation Of Black Hole Inner Accretion Disk-Corona And Optimization Of The Hard X-Ray Polarimeter, X-Calibur, Banafsheh Beheshtipour

Arts & Sciences Electronic Theses and Dissertations

Mass accreting stellar mass and supermassive black holes are strong sources of X-rays. The X- ray observations enable studies of the process of black hole accretion and give us information about the spacetime background. In the framework of my thesis work, I have continued the development of a general-relativistic ray-tracing code enabling the simulation of the Comptonization of photons in the hot accretion disk corona. I use the code to investigate the impact of various approximation schemes for modeling the Comptonization finding that a fully relativistic treatment is needed for accurate predictions in the soft and hard X- ray regimes ...


Ttv-Determined Masses For Warm Jupiters And Their Close Planetary Companions, Dong-Hong Wu, Songhu Wang, Ji-Lin Zhou, Jason H. Steffen, Gregory Laughlin 2018 Nanjing University; University of Nevada, Las Vegas

Ttv-Determined Masses For Warm Jupiters And Their Close Planetary Companions, Dong-Hong Wu, Songhu Wang, Ji-Lin Zhou, Jason H. Steffen, Gregory Laughlin

Physics & Astronomy Faculty Publications

Although the formation and the properties of hot Jupiters (with orbital periods P < 10 days) have attracted a great deal of attention, the origins of warm Jupiters (10 < P < 100 days) are less well studied. Using a transit timing analysis, we present the orbital parameters of five planetary systems containing warm Jupiters, Kepler 30, Kepler 117, Kepler 302, Kepler 487, and Kepler 418. Three of them, Kepler-30 c(M p = 549.4 ± 5.6 M ⊕), Kepler-117 c(M p = 702 ± 63 M ⊕), and Kepler 302 c(M p = 933 ± 527 M ⊕), are confirmed to be real warm Jupiters based on their mass. Insights drawn from the radius–temperature relationship lead to the inference that hot Jupiters and warm Jupiters can be roughly separated by T eff,c = 1123.7 ± 3.3 K. Also, T eff,c provides a good separation for Jupiters with companion fraction consistent with zero (T eff > T eff,c) and those with companion fraction significantly different from zero (T eff < T eff,c).


A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli 2018 University of California, Santa Cruz

A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli

Faculty Publications

The discovery of the ultra-diffuse galaxy NGC 1052-DF2 and its peculiar population of star clusters has raised new questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation. In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large central density core. Better fits are ...


A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli 2018 University of California, Santa Cruz

A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron J. Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli

Aaron J. Romanowsky

The discovery of the ultra-diffuse galaxy NGC 1052-DF2 and its peculiar population of star clusters has raised new questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation. In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large central density core. Better fits are ...


Digital Commons powered by bepress